scholarly journals Antheraea pernyiSilk Fiber: A Potential Resource for Artificially Biospinning Spider Dragline Silk

2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Yaopeng Zhang ◽  
Hongxia Yang ◽  
Huili Shao ◽  
Xuechao Hu

The outstanding properties of spider dragline silk are likely to be determined by a combination of the primary sequences and the secondary structure of the silk proteins.Antheraea pernyisilk has more similar sequences to spider dragline silk than the silk from its domestic counterpart,Bombyx mori. This makes it much potential as a resource for biospinning spider dragline silk. This paper further verified its possibility as the resource from the mechanical properties and the structures of theA. pernyisilks prepared by forcible reeling. It is surprising that the stress-strain curves of theA. pernyifibers show similar sigmoidal shape to those of spider dragline silk. Under a controlled reeling speed of 95 mm/s, the breaking energy was1.04×105 J/kg, the tensile strength was 639 MPa and the initial modulus was 9.9 GPa. It should be noted that this breaking energy of theA. pernyisilk approaches that of spider dragline silk. The tensile properties, the optical orientation and theβ-sheet structure contents of the silk fibers are remarkably increased by raising the spinning speeds up to 95 mm/s.

2004 ◽  
Vol 2 (5) ◽  
pp. 431-438 ◽  
Author(s):  
Rima Menassa ◽  
Hong Zhu ◽  
Costas N. Karatzas ◽  
Anthoula Lazaris ◽  
Alex Richman ◽  
...  

PLoS ONE ◽  
2017 ◽  
Vol 12 (8) ◽  
pp. e0183397 ◽  
Author(s):  
Ali D. Malay ◽  
Kazuharu Arakawa ◽  
Keiji Numata

2007 ◽  
Vol 93 (12) ◽  
pp. 4425-4432 ◽  
Author(s):  
T. Vehoff ◽  
A. Glišović ◽  
H. Schollmeyer ◽  
A. Zippelius ◽  
T. Salditt

2019 ◽  
Vol 19 (3) ◽  
pp. 1970006 ◽  
Author(s):  
Kenjiro Yazawa ◽  
Ali D. Malay ◽  
Hiroyasu Masunaga ◽  
Keiji Numata

Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3596
Author(s):  
Zaroug Jaleel ◽  
Shun Zhou ◽  
Zaira Martín-Moldes ◽  
Lauren M. Baugh ◽  
Jonathan Yeh ◽  
...  

The properties of native spider silk vary within and across species due to the presence of different genes containing conserved repetitive core domains encoding a variety of silk proteins. Previous studies seeking to understand the function and material properties of these domains focused primarily on the analysis of dragline silk proteins, MaSp1 and MaSp2. Our work seeks to broaden the mechanical properties of silk-based biomaterials by establishing two libraries containing genes from the repetitive core region of the native Latrodectus hesperus silk genome (Library A: genes masp1, masp2, tusp1, acsp1; Library B: genes acsp1, pysp1, misp1, flag). The expressed and purified proteins were analyzed through Fourier Transform Infrared Spectrometry (FTIR). Some of these new proteins revealed a higher portion of β-sheet content in recombinant proteins produced from gene constructs containing a combination of masp1/masp2 and acsp1/tusp1 genes than recombinant proteins which consisted solely of dragline silk genes (Library A). A higher portion of β-turn and random coil content was identified in recombinant proteins from pysp1 and flag genes (Library B). Mechanical characterization of selected proteins purified from Library A and Library B formed into films was assessed by Atomic Force Microscopy (AFM) and suggested Library A recombinant proteins had higher elastic moduli when compared to Library B recombinant proteins. Both libraries had higher elastic moduli when compared to native spider silk proteins. The preliminary approach demonstrated here suggests that repetitive core regions of the aforementioned genes can be used as building blocks for new silk-based biomaterials with varying mechanical properties.


2004 ◽  
Vol 14 (22) ◽  
pp. 2070-2074 ◽  
Author(s):  
Daniel Huemmerich ◽  
Thomas Scheibel ◽  
Fritz Vollrath ◽  
Shulamit Cohen ◽  
Uri Gat ◽  
...  

2021 ◽  
Vol 893 ◽  
pp. 31-35
Author(s):  
Jin Lian Hu ◽  
Yuan Zhang Jiang ◽  
Lin Gu

Spiders silks have extraordinary strength and toughness simultaneously, thus has become dreamed materials by scientists and industries. Although there have been tremendous attempts to prepare fibers from genetically manufacture spider silk proteins, however, it has been still a huge challenge because of tedious procedure and high cost. Here, a facile spider-silk-mimicking strategy is reported for preparing highly scratchable polymers and supertough fibers from chemical synthesis route. Polymer films with high extensibility (>1200%) and supertough fibers (~387 MJ m-3) are achieved by introducing polypeptides with β-sheet and α-helical structure in polyureathane/urea polymers. Notabley,the toughness of the fiber is more than twice the reported value of a normal spider dragline silk, and comparable with the toughest spider silk, aciniform silk of Argiope trifasciata.


2021 ◽  
Author(s):  
Nobuaki Kono ◽  
Hiroyuki Nakamura ◽  
Masaru Mori ◽  
Yuki Yoshida ◽  
Rintaro Ohtoshi ◽  
...  

AbstractDragline silk of golden orb-weaver spiders (Nephilinae) is noted for its unsurpassed toughness, combining extraordinary extensibility and tensile strength, suggesting industrial application as a sustainable biopolymer material. To pinpoint the molecular composition of dragline silk and the roles of its constituents in achieving its mechanical properties, we report a multiomics approach combining high-quality genome sequencing and assembly, silk gland transcriptomics, and dragline silk proteomics of four Nephilinae spiders. We observed the consistent presence of the MaSp3B spidroin unique to this subfamily, as well as several non-spidroin SpiCE proteins. Artificial synthesis and combination of these components in vitro showed that the multicomponent nature of dragline silk, including MaSp3B and SpiCE, along with MaSp1 and MaSp2, is essential to realize the mechanical properties of spider dragline silk.


Sign in / Sign up

Export Citation Format

Share Document