scholarly journals Expanding Canonical Spider Silk Properties through a DNA Combinatorial Approach

Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3596
Author(s):  
Zaroug Jaleel ◽  
Shun Zhou ◽  
Zaira Martín-Moldes ◽  
Lauren M. Baugh ◽  
Jonathan Yeh ◽  
...  

The properties of native spider silk vary within and across species due to the presence of different genes containing conserved repetitive core domains encoding a variety of silk proteins. Previous studies seeking to understand the function and material properties of these domains focused primarily on the analysis of dragline silk proteins, MaSp1 and MaSp2. Our work seeks to broaden the mechanical properties of silk-based biomaterials by establishing two libraries containing genes from the repetitive core region of the native Latrodectus hesperus silk genome (Library A: genes masp1, masp2, tusp1, acsp1; Library B: genes acsp1, pysp1, misp1, flag). The expressed and purified proteins were analyzed through Fourier Transform Infrared Spectrometry (FTIR). Some of these new proteins revealed a higher portion of β-sheet content in recombinant proteins produced from gene constructs containing a combination of masp1/masp2 and acsp1/tusp1 genes than recombinant proteins which consisted solely of dragline silk genes (Library A). A higher portion of β-turn and random coil content was identified in recombinant proteins from pysp1 and flag genes (Library B). Mechanical characterization of selected proteins purified from Library A and Library B formed into films was assessed by Atomic Force Microscopy (AFM) and suggested Library A recombinant proteins had higher elastic moduli when compared to Library B recombinant proteins. Both libraries had higher elastic moduli when compared to native spider silk proteins. The preliminary approach demonstrated here suggests that repetitive core regions of the aforementioned genes can be used as building blocks for new silk-based biomaterials with varying mechanical properties.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 511
Author(s):  
Yu Suzuki ◽  
Takanori Higashi ◽  
Takahiro Yamamoto ◽  
Hideyasu Okamura ◽  
Takehiro K. Sato ◽  
...  

Spider dragline silk is a biopolymer with excellent mechanical properties. The development of recombinant spider silk protein (RSP)-based materials with these properties is desirable. Formic acid (FA) is a spinning solvent for regenerated Bombyx mori silk fiber with excellent mechanical properties. To use FA as a spinning solvent for RSP with the sequence of major ampullate spider silk protein from Araneus diadematus, we determined the conformation of RSP in FA using solution NMR to determine the role of FA as a spinning solvent. We assigned 1H, 13C, and 15N chemical shifts to 32-residue repetitive sequences, including polyAla and Gly-rich regions of RSP. Chemical shift evaluation revealed that RSP is in mainly random coil conformation with partially type II β-turn structure in the Gly-Pro-Gly-X motifs of the Gly-rich region in FA, which was confirmed by the 15N NOE data. In addition, formylation at the Ser OH groups occurred in FA. Furthermore, we evaluated the conformation of the as-cast film of RSP dissolved in FA using solid-state NMR and found that β-sheet structure was predominantly formed.


Author(s):  
Christoph Sommer ◽  
Hendrik Bargel ◽  
Nadine Raßmann ◽  
Thomas Scheibel

Abstract Bacterial infections are well recognised to be one of the most important current public health problems. Inhibiting adhesion of microbes on biomaterials is one approach for preventing inflammation. Coatings made of recombinant spider silk proteins based on the consensus sequence of Araneus diadematus dragline silk fibroin 4 have previously shown microbe-repellent properties. Concerning silicone implants, it has been further shown that spider silk coatings are effective in lowering the risk of capsular fibrosis. Here, microbial repellence tests using four opportunistic infection-related strains revealed additional insights into the microbe-repellent properties of spider silk-coated implants, exemplarily shown for silicone surfaces. Graphic Abstract


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Julia C. Heiby ◽  
Benedikt Goretzki ◽  
Christopher M. Johnson ◽  
Ute A. Hellmich ◽  
Hannes Neuweiler

Abstract Web spiders connect silk proteins, so-called spidroins, into fibers of extraordinary toughness. The spidroin N-terminal domain (NTD) plays a pivotal role in this process: it polymerizes spidroins through a complex mechanism of dimerization. Here we analyze sequences of spidroin NTDs and find an unusually high content of the amino acid methionine. We simultaneously mutate all methionines present in the hydrophobic core of a spidroin NTD from a nursery web spider’s dragline silk to leucine. The mutated NTD is strongly stabilized and folds at the theoretical speed limit. The structure of the mutant is preserved, yet its ability to dimerize is substantially impaired. We find that side chains of core methionines serve to mobilize the fold, which can thereby access various conformations and adapt the association interface for tight binding. Methionine in a hydrophobic core equips a protein with the capacity to dynamically change shape and thus to optimize its function.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1013 ◽  
Author(s):  
Hsuan-Chen Wu ◽  
Aditi Pandey ◽  
Liang-Yu Chang ◽  
Chieh-Yun Hsu ◽  
Thomas Chung-Kuang Yang ◽  
...  

The superlative mechanical properties of spider silk and its conspicuous variations have instigated significant interest over the past few years. However, current attempts to synthetically spin spider silk fibers often yield an inferior physical performance, owing to the improper molecular interactions of silk proteins. Considering this, herein, a post-treatment process to reorganize molecular structures and improve the physical strength of spider silk is reported. The major ampullate dragline silk from Nephila pilipes with a high β-sheet content and an adequate tensile strength was utilized as the study material, while that from Cyrtophora moluccensis was regarded as a reference. Our results indicated that the hydrothermal post-treatment (50–70 °C) of natural spider silk could effectively induce the alternation of secondary structures (random coil to β-sheet) and increase the overall tensile strength of the silk. Such advantageous post-treatment strategy when applied to regenerated spider silk also leads to an increment in the strength by ~2.5–3.0 folds, recapitulating ~90% of the strength of native spider silk. Overall, this study provides a facile and effective post-spinning means for enhancing the molecular structures and mechanical properties of as-spun silk threads, both natural and regenerated.


2015 ◽  
Vol 31 (5) ◽  
Author(s):  
Soumyadip Majumder ◽  
Mahadev D. Kaulaskar ◽  
Sudarsan Neogi

AbstractBiotechnology continues to offer routes for many exciting and unique products. Researchers genetically altered goats with a spider gene. These goats produce milk that contains a protein that can be extracted to produce biosteel fibers for use in bulletproof vests. It is referred to as “biosteel” to highlight its strength comparable to steel. This review paper describes the important aspects of produced dragline spider silk proteins via cell culture techniques using silk genes derived from two species of weaving spiders. These fibers were tested for a number of mechanical properties and compared to natural spider silk. In effect, fibers of biosteel were able to absorb similar amounts of energy as natural spider silk by stretching further. As opposed to most other synthetic fibers, biosteel is ecofriendly both in terms of its composition and production process.


2021 ◽  
Vol 893 ◽  
pp. 31-35
Author(s):  
Jin Lian Hu ◽  
Yuan Zhang Jiang ◽  
Lin Gu

Spiders silks have extraordinary strength and toughness simultaneously, thus has become dreamed materials by scientists and industries. Although there have been tremendous attempts to prepare fibers from genetically manufacture spider silk proteins, however, it has been still a huge challenge because of tedious procedure and high cost. Here, a facile spider-silk-mimicking strategy is reported for preparing highly scratchable polymers and supertough fibers from chemical synthesis route. Polymer films with high extensibility (>1200%) and supertough fibers (~387 MJ m-3) are achieved by introducing polypeptides with β-sheet and α-helical structure in polyureathane/urea polymers. Notabley,the toughness of the fiber is more than twice the reported value of a normal spider dragline silk, and comparable with the toughest spider silk, aciniform silk of Argiope trifasciata.


2007 ◽  
Vol 47 (supplement) ◽  
pp. S32
Author(s):  
Mitsuhiro Miyazawa ◽  
Yuji Hidaka ◽  
Sayoko Yokoi

2005 ◽  
Vol 82 (2) ◽  
pp. 253-260 ◽  
Author(s):  
F. Junghans ◽  
M. Morawietz ◽  
U. Conrad ◽  
T. Scheibel ◽  
A. Heilmann ◽  
...  

2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Yaopeng Zhang ◽  
Hongxia Yang ◽  
Huili Shao ◽  
Xuechao Hu

The outstanding properties of spider dragline silk are likely to be determined by a combination of the primary sequences and the secondary structure of the silk proteins.Antheraea pernyisilk has more similar sequences to spider dragline silk than the silk from its domestic counterpart,Bombyx mori. This makes it much potential as a resource for biospinning spider dragline silk. This paper further verified its possibility as the resource from the mechanical properties and the structures of theA. pernyisilks prepared by forcible reeling. It is surprising that the stress-strain curves of theA. pernyifibers show similar sigmoidal shape to those of spider dragline silk. Under a controlled reeling speed of 95 mm/s, the breaking energy was1.04×105 J/kg, the tensile strength was 639 MPa and the initial modulus was 9.9 GPa. It should be noted that this breaking energy of theA. pernyisilk approaches that of spider dragline silk. The tensile properties, the optical orientation and theβ-sheet structure contents of the silk fibers are remarkably increased by raising the spinning speeds up to 95 mm/s.


Sign in / Sign up

Export Citation Format

Share Document