scholarly journals Modeling and Analysis of Reentrant Manufacturing Systems: Micro- and Macroperspectives

2011 ◽  
Vol 2011 ◽  
pp. 1-17
Author(s):  
Fenglan He ◽  
Ming Dong ◽  
Dong Yang

In order to obtain the better analysis of the multiple reentrant manufacturing systems (MRMSs), their modeling and analysis from both micro- and macroperspectives are considered. First, this paper presents the discrete event simulation models for MRMS and the corresponding algorithms are developed. In order to describe MRMS more accurately, then a modified continuum model is proposed. This continuum model takes into account the re-entrant degree of products, and its effectiveness is verified through numerical experiments. Finally, based on the discrete event simulation and the modified continuum models, a numerical example is used to analyze the MRMS. The changes in the WIP levels and outflux are also analyzed in details for multiple re-entrant supply chain networks. Meanwhile, some interesting observations are discussed.

2012 ◽  
Vol 502 ◽  
pp. 7-12 ◽  
Author(s):  
L.P. Ferreira ◽  
E. Ares ◽  
G. Peláez ◽  
M. Marcos ◽  
M. Araújo

This paper proposes a methodology to analyze complex manufacturing systems, based on discrete-event simulation models. The methodology was validated by performing different simulation experiments and will be applied to a multistage multiproduct production line, based on a real case, with a closed-loop network configuration of machines and intermediate buffers consisting of conveyors, which is very common in the automobile sector. A simulation model in an Arena environment was developed, which allowed for an analysis of the important aspects not yet studied in specialized literature, namely the assessment of the impact of the production sequence on the automobile assembly line. Various sequence rules were analyzed and the performance of each of the corresponding simulation models was registered.


Author(s):  
Bjo¨rn Johansson ◽  
Raghu Kacker ◽  
Ru¨ediger Kessel ◽  
Charles McLean ◽  
Ram Sriram

This paper describes how combinatorial testing using covering arrays can be implemented to optimize discrete event simulation models of manufacturing systems for measures of sustainability. Discrete event simulation models often have hundreds of parameters and many test values for each parameter. Generally the interactions between the parameter-values are not well understood; this can lead to sub-optimization of the system. Most optimization engines and software for discrete event simulation packages use full factorial designs, which require many runs and hence a lot of computation time. In this paper we introduce combinatorial testing using a test-suite generation tool called NIST-ACTS (National Institute of Standards and Technology - Advanced Combinatorial Test Suites) to dramatically decrease the number of runs required to detect the interactions and determine an optimal solution.


SIMULATION ◽  
2021 ◽  
pp. 003754972110309
Author(s):  
Mohd Shoaib ◽  
Varun Ramamohan

We present discrete-event simulation models of the operations of primary health centers (PHCs) in the Indian context. Our PHC simulation models incorporate four types of patients seeking medical care: outpatients, inpatients, childbirth cases, and patients seeking antenatal care. A generic modeling approach was adopted to develop simulation models of PHC operations. This involved developing an archetype PHC simulation, which was then adapted to represent two other PHC configurations, differing in numbers of resources and types of services provided, encountered during PHC visits. A model representing a benchmark configuration conforming to government-mandated operational guidelines, with demand estimated from disease burden data and service times closer to international estimates (higher than observed), was also developed. Simulation outcomes for the three observed configurations indicate negligible patient waiting times and low resource utilization values at observed patient demand estimates. However, simulation outcomes for the benchmark configuration indicated significantly higher resource utilization. Simulation experiments to evaluate the effect of potential changes in operational patterns on reducing the utilization of stressed resources for the benchmark case were performed. Our analysis also motivated the development of simple analytical approximations of the average utilization of a server in a queueing system with characteristics similar to the PHC doctor/patient system. Our study represents the first step in an ongoing effort to establish the computational infrastructure required to analyze public health operations in India and can provide researchers in other settings with hierarchical health systems, a template for the development of simulation models of their primary healthcare facilities.


2012 ◽  
Vol 32 (3) ◽  
pp. 543-560 ◽  
Author(s):  
Alexandre Ferreira de Pinho ◽  
José Arnaldo Barra Montevechi ◽  
Fernando Augusto Silva Marins ◽  
Rafael Florêncio da Silva Costa ◽  
Rafael de Carvalho Miranda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document