scholarly journals Theoretical Study of Carbon Clusters in Silicon Carbide Nanowires

2011 ◽  
Vol 2011 ◽  
pp. 1-8
Author(s):  
J. M. Morbec ◽  
R. H. Miwa

Using first-principles methods we performed a theoretical study of carbon clusters in silicon carbide (SiC) nanowires. We examined small clusters with carbon interstitials and antisites in hydrogen-passivated SiC nanowires growth along the [100] and [111] directions. The formation energies of these clusters were calculated as a function of the carbon concentration. We verified that the energetic stability of the carbon defects in SiC nanowires depends strongly on the composition of the nanowire surface: the energetically most favorable configuration in carbon-coated [100] SiC nanowire is not expected to occur in silicon-coated [100] SiC nanowire. The binding energies of some aggregates were also obtained, and they indicate that the formation of carbon clusters in SiC nanowires is energetically favored.

Author(s):  
K. B. Alexander ◽  
P. F. Becher

The presence of interfacial films at the whisker-matrix interface can significantly influence the fracture toughness of ceramic composites. The film may alter the interface debonding process though changes in either the interfacial fracture energy or the residual stress at the interface. In addition, the films may affect the whisker pullout process through the frictional sliding coefficients or the extent of mechanical interlocking of the interface due to the whisker surface topography.Composites containing ACMC silicon carbide whiskers (SiCw) which had been coated with 5-10 nm of carbon and Tokai whiskers coated with 2 nm of carbon have been examined. High resolution electron microscopy (HREM) images of the interface were obtained with a JEOL 4000EX electron microscope. The whisker geometry used for HREM imaging is described in Reference 2. High spatial resolution (< 2-nm-diameter probe) parallel-collection electron energy loss spectroscopy (PEELS) measurements were obtained with a Philips EM400T/FEG microscope equipped with a Gatan Model 666 spectrometer.


2021 ◽  
Vol 103 (19) ◽  
Author(s):  
Peter A. Schultz ◽  
Renee M. Van Ginhoven ◽  
Arthur H. Edwards

2007 ◽  
Vol 19 (8) ◽  
pp. 086208 ◽  
Author(s):  
Guillaume Lucas ◽  
Laurent Pizzagalli

1991 ◽  
Vol 250 ◽  
Author(s):  
Mark D. Allendorf ◽  
Carl F. Melius

AbstractEquilibrium calculations are reported for conditions typical of silicon carbide (SiC) deposition from mixtures of silane and hydrocarbons. Included are 34 molecules containing both silicon and carbon, allowing an assessment to be made of the importance of organosilicon species (and organosilicon radicals in particular) to the deposition process. The results are used to suggest strategies for improved operation of SiC CVD processes.


2003 ◽  
Vol 68 (12) ◽  
Author(s):  
A. Gali ◽  
P. Deák ◽  
P. Ordejón ◽  
N. T. Son ◽  
E. Janzén ◽  
...  

Author(s):  
Yury Gogotsi ◽  
Valentin Kamyshenko ◽  
Vladimir Shevchenko ◽  
Sascha Welz ◽  
Daniel A. Ersoy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document