scholarly journals Extended Mixed Function Method and Its Application for Solving Two Classic Toda Lattice Equations

2011 ◽  
Vol 2011 ◽  
pp. 1-24
Author(s):  
Weiguo Rui ◽  
Xinsong Yang

The mixed function method is extended from the(1+1)-dimensional space to the(2+1)-dimensional one, even those forms of exact solution do not exist in(1+1)-dimensional NDDEs. By using this extended method, the Toda lattice and(2+1)-dimensional Toda lattice equations are studied. Some new solutions such as discrete solitary wave solutions, discrete kink and antikink wave solutions, and discrete breather soliton solutions are obtained, and their dynamic properties are discussed.

2021 ◽  
pp. 2150139
Author(s):  
Syed Tahir Raza Rizvi ◽  
Aly R. Seadawy ◽  
Ishrat Bibi ◽  
Muhammad Younis

In this paper, we study (2+1)-dimensional non-linear spin dynamics of Heisenberg ferromagnetic spin chains equation (HFSCE) for various soliton solutions. We obtain two types of optical solitons i.e. chirp free and chirped solitons. We obtain bright and bright-like soliton, singular-like solitons, periodic and rational solutions, Weierstrass elliptic functions solutions and other solitary wave solutions for HFSCE with the aid of sub-ODE method. At the end, we present graphical representation of our solutions.


2014 ◽  
Vol 19 (2) ◽  
pp. 209-224
Author(s):  
Mustafa Inc ◽  
Eda Fendoglu ◽  
Houria Triki ◽  
Anjan Biswas

This paper presents the Drinfel’d–Sokolov system (shortly D(m, n)) in a detailed fashion. The Jacobi’s elliptic function method is employed to extract the cnoidal and snoidal wave solutions. The compacton and solitary pattern solutions are also retrieved. The ansatz method is applied to extract the topological 1-soliton solutions of the D(m, n) with generalized evolution. There are a couple of constraint conditions that will fall out in order to exist the topological soliton solutions.


2021 ◽  
pp. 2150391
Author(s):  
Ghazala Akram ◽  
Naila Sajid

In this article, three mathematical techniques have been operationalized to discover novel solitary wave solutions of (2+1)-dimensional Maccari system, which also known as soliton equation. This model equation is usually of applicative relevance in hydrodynamics, nonlinear optics and plasma physics. The [Formula: see text] function, the hyperbolic function and the [Formula: see text]-expansion techniques are used to obtain the novel exact solutions of the (2+1)-dimensional Maccari system (arising in nonlinear optics and in plasma physics). Many novel solutions such as periodic wave solutions by [Formula: see text] function method, singular, combined-singular and periodic solutions by hyperbolic function method, hyperbolic, rational and trigonometric solutions by [Formula: see text]-expansion method are obtained. The exact solutions are shown through 3D graphics which present the movement of the obtained solutions.


2009 ◽  
Vol 23 (30) ◽  
pp. 3667-3675 ◽  
Author(s):  
AHMET YILDIRIM

We implemented homotopy perturbation method for approximating the solution to the nonlinear dispersive K(m,n,1) type equations. By using this scheme, the explicit exact solution is calculated in the form of a quickly convergent series with easily computable components. To illustrate the application of this method, numerical results are derived by using the calculated components of the homotopy perturbation series.


2020 ◽  
Vol 34 (32) ◽  
pp. 2050317
Author(s):  
K. El-Rashidy ◽  
Aly R. Seadawy

The multi-wave solutions for nonlinear Kundu–Eckhaus (KE) equation are obtained using logarithmic transformation and symbolic computation using the function method. Three-wave method, double exponential and homoclinic breather approach are used to get these solutions. We study the conflict between our results and considerably-known results and state that the solutions reached here are new. By specifying the suitable values for the parameter, the drawings of the solutions obtained are shown in this paper.


2020 ◽  
Vol 34 (13) ◽  
pp. 2050139 ◽  
Author(s):  
Aly R. Seadawy ◽  
Sultan Z. Alamri ◽  
Haya M. Al-Sharari

The propagation of soliton through optical fibers has been studied by using nonlinear Schrödinger’s equation (NLSE). There are different types of NLSEs that study this physical phenomenon such as (GRKLE) generalized Radhakrishnan–Kundu–Lakshmanan equation. The generalized nonlinear RKL dynamical equation, which presents description of the dynamical of light pulses, has been studied. We used two formulas of the modified simple equation method to construct the optical soliton solutions of this model. The obtained solutions can be represented as bistable bright, dark, periodic solitary wave solutions.


2019 ◽  
Vol 33 (09) ◽  
pp. 1950106 ◽  
Author(s):  
Behzad Ghanbari

In this paper, some new traveling wave solutions to the Hirota–Maccari equation are constructed with the help of the newly introduced method called generalized exponential rational function method. Several families of exact solutions are found corresponding to the equation. To the best of our knowledge, these solutions are new, and have never been addressed in the literature. The graphical interpretation of the solutions is also depicted. Moreover, it is contemplated that the proposed technique can also be employed to another sort of complex models.


2010 ◽  
Vol 65 (3) ◽  
pp. 197-202 ◽  
Author(s):  
Rathinasamy Sakthivel ◽  
Changbum Chun

In this paper, the exp-function method is applied by using symbolic computation to construct a variety of new generalized solitonary solutions for the Chaffee-Infante equation with distinct physical structures. The results reveal that the exp-function method is suited for finding travelling wave solutions of nonlinear partial differential equations arising in mathematical physics


2010 ◽  
Vol 65 (8-9) ◽  
pp. 658-664 ◽  
Author(s):  
Xian-Jing Lai ◽  
Xiao-Ou Cai

In this paper, the decomposition method is implemented for solving the bidirectional Sawada- Kotera (bSK) equation with two kinds of initial conditions. As a result, the Adomian polynomials have been calculated and the approximate and exact solutions of the bSK equation are obtained by means of Maple, such as solitary wave solutions, doubly-periodic solutions, two-soliton solutions. Moreover, we compare the approximate solution with the exact solution in a table and analyze the absolute error and the relative error. The results reported in this article provide further evidence of the usefulness of the Adomian decomposition method for obtaining solutions of nonlinear problems


Sign in / Sign up

Export Citation Format

Share Document