scholarly journals Proliferative Tumor Doubling Times of Prostatic Carcinoma

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Priya N. Werahera ◽  
L. Michael Glode ◽  
Francisco G. La Rosa ◽  
M. Scott Lucia ◽  
E. David Crawford ◽  
...  

Prostate cancer (PCa) has a variable biology ranging from latent cancer to extremely aggressive tumors. Proliferative activities of cancers may indicate their biological potential. A flow cytometric assay to calculate maximum proliferative doubling times (Tmax) of PCa in radical prostatectomy specimens after preoperativein vivobromodeoxyuridine (BrdU) infusion is presented. Only 4/17 specimens had tumors large enough for flow cytometric analysis. TheTmaxof tumors was similar and ranged from 0.6 to 3.6 months. Tumors had calculated doubling times 2- to 25-fold faster than their matched normal tissue. Variations in labeling index andTmaxwere observed within a tumor as well as between different Gleason grades. The observed PSA doubling times (PSA-DT) ranged from 18.4 to 32.0 months, considerably slower than the correspondingTmaxof tumors involved. While lack of data for apoptotic rates is a limitation, apparent biological differences between latent versus aggressive PCa may be attributable to variations in apoptotic rates of these tumors rather than their cell proliferative rates.

2005 ◽  
Vol 173 (4S) ◽  
pp. 157-157
Author(s):  
Priya N. Werahera ◽  
Tammy E. Hedlund ◽  
L. Michael Glode ◽  
E. David Crawford ◽  
Kenneth A. Easterday ◽  
...  

Author(s):  
Masakuni Furusato ◽  
William C. Allsbrook ◽  
Hiroyuki Kato ◽  
Hiroyuki Takahashi ◽  
Yuri Miyasaka ◽  
...  

2019 ◽  
Vol 35 (9) ◽  
pp. 577-592 ◽  
Author(s):  
Srijita Chakrabarti ◽  
Danswrang Goyary ◽  
Sanjeev Karmakar ◽  
Pronobesh Chattopadhyay

Health hazards of titanium dioxide nanoparticles (TiO2-NPs) have raised severe concerns because of the paucity of information regarding the toxic effects among the population. In the present research, the in vitro and in vivo cytotoxic potential of TiO2-NPs were evaluated using flow cytometric techniques. Further, in vitro and in vivo genotoxic endpoints were estimated by means of comet, micronucleus (MN), and chromosomal aberration (CA) assays. In vitro analysis was performed at the concentration range of 10–100 µg/mL using murine RAW 264.7 cells. In vivo experiments were conducted on Albino mice (M/F) by exposing them to 200 and 500 mg/kg TiO2-NPs for 90 days. Decreased percentage of cell viability with higher doses of TiO2-NPs was evident in both in vitro and in vivo flow cytometric analysis. Further, an impaired cell cycle (G0/G1, S, and G2/M) was reflected in the present investigation following the exposure to TiO2-NPs. Increased comet scores such as tail length, % DNA in tail, tail moment, and olive moment were also observed with the higher doses of TiO2-NPs in vitro and in vivo comet assays. Finally, the in vivo MN and CA assays revealed the formation of MN and chromosomal breakage following the exposure to TiO2-NPs.


2013 ◽  
Vol 25 (1) ◽  
pp. 312
Author(s):  
W. Garrels ◽  
S. Holler ◽  
N. Cleve ◽  
S. Klein ◽  
Z. Ivics ◽  
...  

Recently, we produced 2 founder boars with a non-autonomous Sleeping Beauty (SB) system carrying 3 monomeric integrations of a Venus transposon cassette and showing transgene segregation during meiosis (Garrels et al. 2011 PLoS One 6, e27563). It was possible to show transmission of the reporter protein to fertilized oocytes by confocal microscopy. The aim of this study was to assess the suitability of different fluorophore reporters for in vivo labelling of pig spermatozoa. Therefore, we used Venus transposon fibroblasts from a F1 boar, which carry a single integration of the transposon cassette and used these fibroblasts for a Cre-mediated cassette exchange against an mCherry reporter. These cells were used for somatic cell nuclear transfer (SCNT) to derive a syngene clone cohort of boars, which differ only in the fluorophore reporter cDNAs (either Venus or mCherry). Importantly, this methodology did not request any antibiotic selection cassette and allows precise genetic modifications in a livestock species where no authentic embryonic stem cells are available (Garrels et al. 2012 Trends in Biotechnology 30, 386–393). A total of 8 male piglets carrying the Venus transposon, and 4 male piglets carrying the mCherry reporter were born. Three Venus boars and 2 mCherry boars were raised to sexual maturity, and ejaculated sperm was obtained with the help of a phantom. A detailed flow cytometric analysis revealed that the spermatozoa samples were specifically Venus or mCherry positive [Gallios, Beckmann Coulter, Krefeld, Germany; solid-state laser (488 nm; 22 mW), filter for green fluorescence (525 BP); filter for red fluorescence: (620/30)], respectively. In direct comparative measurements, the spermatozoa samples from transgenic boars (Venus and Cherry) and wildtype controls could be discriminated. Interestingly, spermatozoa were uniformly Venus- or mCherry-positive and gave a distinct fluorescence peak in flow-cytometric measurements. The monomeric transgenes were transmitted through the germ line according to Mendelian rules with the expected ratio of 50% transgenic and 50% nontransgenic piglets. Fluorescence microscopic analysis and Western blotting confirmed the uniform presence of Venus and mCherry in boar spermatozoa, respectively. This is the first characterisation of spermatozoa from a pig cohort carrying a targeted cassette exchange. This large animal model may help to elucidate the function of paternally transmitted components to fertilized oocytes.


Blood ◽  
2000 ◽  
Vol 95 (3) ◽  
pp. 855-862 ◽  
Author(s):  
Robert A. J. Oostendorp ◽  
Julie Audet ◽  
Connie J. Eaves

The kinetics of proliferation of primitive murine bone marrow (BM) cells stimulated either in vitro with growth factors (fetal liver tyrosine kinase ligand 3 [FL], Steel factor [SF], and interleukin-11 [IL-11], or hyper–IL-6) or in vivo by factors active in myeloablated recipients were examined. Cells were first labeled with 5- and 6-carboxyfluorescein diacetate succinimidyl ester (CFSE) and then incubated overnight prior to isolating CFSE+ cells. After 2 more days in culture, more than 90% of the in vivo lymphomyeloid repopulating activity was associated with the most fluorescent CFSE+ cells (ie, cells that had not yet divided), although this accounted for only 25% of the repopulating stem cells measured in the CFSE+ “start” population. After a total of 4 days in culture (1 day later), 15-fold more stem cells were detected (ie, 4-fold more than the day 1 input number), and these had become (and thereafter remained) exclusively associated with cells that had divided at least once in vitro. Flow cytometric analysis of CFSE+ cells recovered from the BM of transplanted mice indicated that these cells proliferated slightly faster (up to 5 divisions completed within 2 days and up to 8 divisions completed within 3 days in vivo versus 5 and 7 divisions, respectively, in vitro). FL, SF, and ligands which activate gp130 are thus efficient stimulators of transplantable stem cell self-renewal divisions in vitro. The accompanying failure of these cells to accumulate rapidly indicates important changes in their engraftment potential independent of accompanying changes in their differentiation status.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3896-3896
Author(s):  
David A. Wilcox ◽  
Juan Fang ◽  
Bryon D. Johnson

Abstract Inheritance of a naturally occurring polymorphism of the human integrin β3-subunit at amino acid 33 causes a change from Leu to Pro that has been implicated as a risk factor for thrombotic complication in humans. It is unclear; however, if Pro (also known as the platelet alloantigen PlA2 form of β3) can alter integrin activation to significantly affect platelet function in vivo, since some clinical studies do not corroborate the initial findings. Since PlA2 is a frequent variant of β3 expressed on 28% of platelets from Americans the impact of this genetic variation on platelet function could have widespread clinical relevance; therefore, we developed a murine model to determine if expression of this common polymorphism of human integrin β3 can increase platelet function and lead to an increased propensity for thrombosis within a homogeneous population of mice. This model eliminates issues arising from variation in the genetic make-up, physical environment, and/or lifestyles of humans and allows for in vivo analysis not possible with human subjects. To accomplish this, cDNA encoding each form of the human β3-subunit was subcloned into an HIV type-1 lentivirus-derived vector under the transcriptional control of the human αIIb gene promoter to direct synthesis of β3 specifically to the megakaryocyte lineage. Bone marrow was isolated from β3-deficient mice and transduced with β3 virions encoding either the PlA1 or PlA2 form of human β3, and then transplanted into lethally irradiated β3-deficient littermates. Flow cytometric analysis demonstrated stable expression of the hybrid murine/human αIIbβ3 integrin complex on the surface of circulating platelets. Immunoanalysis using monoclonal antibodies and human serum that react specifically with the PlA1 or PlA2 confirmed the identity of each alloantigen of human β3. The lentivirus contained a second transgene encoding a drug-selectable marker (P140K MGMT) that was used for in vivo enrichment of transduced cells in mice treated with two regimens of cytotoxic reagents, O6-BG/BCNU. Flow cytometric analysis showed that use of drug-selection resulted in increased expression of the integrin αIIbβ3 complex to equal levels on nearly 100% of platelets using either form of human β3. Similar to platelets from normal mice, platelets expressing each PlA form of β3 could be induced to form aggregates ex vivo upon treatment with a cocktail of physiological agonists of platelet activation (adenosine diphosphate, epinephrine and the thrombin receptor activating peptide). These results demonstrate the feasibility for targeting expression of altered forms of the human integrin β3-subunit to murine platelets and pave the way for future studies to examine and compare the effect of integrin αIIbβ3 structure on platelet function and thrombosis in vivo.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 476-476
Author(s):  
Alan H. Shih ◽  
Yanwen Jiang ◽  
Kaitlyn Shank ◽  
Suveg Pandey ◽  
Agnes Viale ◽  
...  

Specific combinations of Acute Myeloid Leukemia (AML) somatic mutations are associated with distinct clinical and biologic features. However, in vivo models do not exist for the majority of common, poor-prognosis genotypes. Concurrent mutations in FLT3 and TET2 are associated with adverse outcome. We hypothesized that activating mutations in FLT3 would cooperate with inactivating mutations in TET2to induce AML in vivo, and that we could investigate AML pathogenesis and therapeutic response using a genetic model of this poor-risk AML genotype. To understand how these genes cooperate to induce AML, we generated Vav+Tet2fl/flFlt3-ITD mice, which resulted in fully penetrant, lethal disease in all recipient mice. Flow cytometric analysis revealed expansion of mac1+ cells in the peripheral blood, with progressive expansion of a c-Kit+, blast population which was apparent in the blood and bone marrow at 28 days, leading to lethal AML in all Vav+Tet2fl/flFlt3-ITD mice with a median survival of 12 months. Consistent with genetic data demonstrating most AML patients have monoallelic TET2 mutations, Vav+Tet2fl/+Flt3-ITD mice also develop AML, suggesting haploinsufficiency for Tet2 is sufficient to cooperate with the Flt3-ITD mutation to induce AML. All mice developed leukocytosis (median 85K/uL), splenomegaly (median 554mg) and hepatomegaly (median 2900mg) with evidence of extramedullary disease cell infiltration by leukemic blasts. Flow cytometric analysis of stem/progenitor populations revealed expansion of the granulocyte-macrophage progenitor (GMP) population and the lin- sca+ kit+ (LSK) stem cell population. Detailed analysis of the LSK population revealed a decrease in the LT-HSC population (LSK CD150+ CD48-) that was replaced by a monomorphic CD48+ CD150- multipotent progenitor population. Given previous studies have shown that LSK and GMP cells can contain leukemia stem cells (LSC) in other models of AML, we performed secondary transplant studies with LSK and GMP populations. LSK (CD48+ CD150-) cells, but not GMP cells, were able to induce disease in secondary and tertiary recipients in vivo. In order to assess the sensitivity of Tet2/Flt3-mutant AML and specifically the LSCs, to targeted therapies, we treated primary and transplanted mice with chronic administration of AC220, a FLT3 inhibitor in late-stage clinical trials. AC220 treatment inhibited FLT3 signaling in vivo, and reduced peripheral blood counts/splenomegaly. However, FLT3 inhibition did not reduce the proportion of AML cells in the bone marrow and peripheral blood. AC220 therapy in vivo reduced the proportion of GMP cells, but not LSK cells, demonstrating LSCs in this model are resistant to FLT3-targeted anti-leukemic therapy. We hypothesized that Tet2/Flt3-mutant LSCs possess a distinct epigenetic/transcriptional signature that contributes to leukemic cell self-renewal and therapeutic resistance. We performed RNA-seq using the Lifetech Proton sequencer to profile the expression landscape of Vav+Tet2fl/flFlt3-ITD mutant LSKs compared to normal stem cells. We were able to obtain an average of 62 million reads per sample. We identified over 400 genes differentially expressed in LSCs relative to normal hematopoietic stem cells (FC>2.5, padj <0.05). Of note, we found that genes involved in normal myelo-erythroid differentiation, including GATA1, GATA2, and EPOR, were transcriptionally silenced in LSCs relative to normal stem cells, consistent with their the impaired differentiation and increased self-renewal observed in LSCs. Enhanced representation bisulfite sequencing revealed a subset of these genes were marked by increased promoter methylation. The number of hyper differentially methylated regions (HyperDMRs, 10% methylation difference, FDR<0.2) was significantly greater in Vav+Tet2fl/flFlt3-ITD cells (787 HyperDMRs) compared to Vav+Tet2fl/fl cells (76 DMRs) suggesting FLT3 activation and TET2 loss cooperate to alter the epigenetic landscape in hematopoietic cells. Our data demonstrate that TET and FLT3 mutations can cooperate to induce AML in vivo, with a defined LSC population that is resistant to targeted therapies and characterized by site-specific changes in DNA methylation and gene expression. Current studies are aimed to assess the functional role of specific gene targets in LSC survival, and at defining therapeutic liabilities that can be translated to the clinical context. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 364-364
Author(s):  
Olga A Guryanova ◽  
Yen Lieu ◽  
Kaitlyn R Shank ◽  
Sharon Rivera ◽  
Francine E Garrett-Bakelman ◽  
...  

Abstract Mutations in the DNA methyltransferase 3A (DNMT3A) gene are frequent in normal karyotype de novo acute myeloid leukemia (AML) (20-35%), chronic myelomonocytic leukemia (CMML) (10-20%) and myelodysplastic syndrome (MDS) (8%). Hematopoietic-specific loss of Dnmt3a in a mouse model leads to acquisition of aberrant self-renewal by the HSCs and expansion of the stem/progenitor compartment in bone marrow transplantation studies. Despite these important insights, the impact of hematopoietic deletion of Dnmt3a on disease phenotype in primary, non-transplanted mice has not been described. Mx1-Cre-mediated Dnmt3a ablation in the hematopoietic system in primary mice led to the development of a myeloproliferative neoplasm (MPN) with a 100% penetrance (n=14) and a median age of onset at 47.7 weeks (survival difference between Dnmt3a KO and control animals p<0.0001, Figure 1A). Loss of Dnmt3a in the hematopoietic compartment resulted in thrombocytopenia (platelet counts 250±251.8 K/μl in Dnmt3a KO vs 1260±292.8 K/μl in controls, p<0.002) and overall anemia (hematocrit 25.25±7.48% vs 44.8±5.83%, p<0.006). Marked expansion of the mature Mac1+Gr1+ myeloid cell population in the peripheral blood was evident by flow cytometric analysis (52.3±18.03% in Dnmt3a knock-outs). Myeloproliferation induced by Dnmt3a loss was characterized by marked, progressive hepatomegaly (liver weights 7.25±1.195 g in Dnmt3a-deleted animals vs 1.61±0.266 g in wild-type controls, p<1.75×10^-8, Figure 1B) with moderate splenomegaly (spleen weights 457.5±379.6 mg vs 79.43±21.19 mg, p<0.033). Histopathological analysis revealed massive myeloid infiltration in spleens and livers leading to complete effacement of organ architecture, left shifted myeloid cells, and occasional blasts. In addition, the presence of megakaryocytes in spleens and livers of Dnmt3a-deleted mice was indicative of extramedullary hematopoiesis. The significant myeloid infiltration of liver parenchyma was confirmed by flow cytometric analysis of liver tissue, with Mac1+Gr1+ myeloid cells making up 66.15±11.93% of all viable cells. In line with previous reports, we observed an increased number of immunophenotypically defined stem (Lin-Sca1+cKit+, LSK, 2.013±1.200% in Dnmt3a-ablated mice vs 0.423±0.052% in controls, a 4.76-fold increase, p<0.014) and granulomonocytic progenitor (GMP, Lin-Sca1-cKit+CD34+FcγR+, 2.713±1.593% vs 1.278±0.451%, a 2.12-fold increase, p<0.024) cells in the bone marrow. Consistent with extramedullary hematopoiesis, we were able to detect expanded LSK cell populations in livers and spleens of Dnmt3a-deleted mice. Notably, the myeloid disease phenotype induced by Dnmt3a loss was fully transplantable, including the marked hepatomegaly; these data demonstrate that the liver-specific expansion reflects a cell-autonomous mechanism. To assess relative tropism for different target organs, we next performed homing studies where Dnmt3a-deleted bone marrow cells were competed against wild-type counterparts in lethally irradiated hosts. 48 hours after transplantation, we observed increased tropism of the Dnmt3aΔ/Δ BM cells to the liver and spleen, whereas control cells preferentially localized to the bone marrow (difference between homing to bone marrow and spleen/liver p<0.0115, Figure 1C). These data demonstrate that altered homing and tissue tropism of Dnmt3a KO hematopoietic cells promote extramedullary hematopoiesis and liver involvement. ERRBS and gene expression profiles by RNA-seq in stem and progenitor cell populations demonstrated differential regulation of key biologic pathways, including self-renewal, hematopoietic lineage commitment and differentiation, and heterotypic cell-cell interactions. In conclusion, our studies show that ablation of Dnmt3a in the hematopoietic system leads to myeloid transformation in vivo, with cell autonomous liver tropism and marked extramedullary hematopoiesis. These data demonstrate, in addition to its established role in controlling self-renewal, Dnmt3a serves as an important regulator of the myeloid compartment that limits expansion of myeloid progenitors in vivo. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document