scholarly journals Coding ATC Incident Data Using HFACS: Intercoder Consensus

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Liang Wang ◽  
Yaohua Wang ◽  
Xiaoqiang Yang ◽  
Kai Cheng ◽  
Haishan Yang ◽  
...  

Reliability studies for coding contributing factors of incident reports in high hazard industries are rarely conducted and reported. Although the Human Factors Analysis and Classification System (HFACS) appears to have a larger number of such studies completed than most other systems doubt exists as the accuracy and comparability of results between studies due to aspects of methodology and reporting. This paper reports on a trial conducted on HFACS to determine its reliability in the context of military air traffic control (ATC). Two groups participated in the trial: one group comprised of specialists in the field of human factors, and the other group comprised air traffic controllers. All participants were given standardized training via a self-paced workbook and then read 14 incident reports and coded the associated findings. The results show similarly low consensus for both groups of participants. Several reasons for the results are proposed associated with the HFACS model, the context within which incident reporting occurs in real organizations and the conduct of the studies.

2019 ◽  
Vol 9 (23) ◽  
pp. 5049 ◽  
Author(s):  
Tao Lyu ◽  
Wenbin Song ◽  
Ke Du

Air traffic control (ATC) performance is important to ensure flight safety and the sustainability of aviation growth. To better evaluate the performance of ATC, this paper introduces the HFACS-BN model (HFACS: Human factors analysis and classification system; BN: Bayesian network), which can be combined with the subjective information of relevant experts and the objective data of accident reports to obtain more accurate evaluation results. The human factors of ATC in this paper are derived from screening and analysis of 142 civil and general aviation accidents/incidents related to ATC human factors worldwide from 1980 to 2019, among which the most important 25 HFs are selected to construct the evaluation model. The authors designed and implemented a questionnaire survey based on the HFACS framework and collected valid data from 26 frontline air traffic controllers (ATCO) and experts related to ATC in 2019. Combining the responses with objective data, the noisy MAX model is used to calculate the conditional probability table. The results showed that, among the four levels of human factors, unsafe acts had the greatest influence on ATC Performance (79.4%), while preconditions for safe acts contributed the least (40.3%). The sensitivity analysis indicates the order of major human factors influencing the performance of ATC. Finally, this study contributes to the literature in terms of methodological development and expert empirical analysis, providing data support for human error management intervention of ATC in aviation safety.


2020 ◽  
Vol 34 (22n24) ◽  
pp. 2040142
Author(s):  
Te-Jen Su ◽  
Kun-Liang Lo ◽  
Feng-Chun Lee ◽  
Yuan-Hsiu Chang

Aircraft approaching is the most dangerous phase in every complete flight. To solve the pressure of air traffic controllers and the landings delayed problems caused by the huge air traffic flow in Terminal Control Area (TCA), an automatic Air Traffic Control (ATC) instructions system is initially designed in this paper. It applies the fuzzy theory to make instant and appropriate decisions which can be transmitted via Controller-Pilot Datalink Communications (CPDLC). By means of the designed system, the decision-making time can be saved and the human factors can be reduced to avoid the flight accidents and further delays in aircraft approaching.


Author(s):  
Sehchang Hah ◽  
Ben Willems ◽  
Gary Mueller ◽  
Daniel R. Johnson ◽  
Hyun Woo ◽  
...  

In this paper, we report results of a human-in-the-loop simulation experiment that evaluated how Conflict Resolution Advisories (CRA) affected en route air traffic controllers’ performance. Twelve current en route Certified Professional Controllers from Air Route Traffic Control Centers (ARTCCs) participated in the experiment. Results showed that controllers used CRA menus significantly more often than Baseline menus. They also spent more time interacting with the CRA menus than with the Baseline menus. Most of the participants’ subjective ratings favored the CRA, but they also pointed out a few features to be improved.


Aerospace ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 170
Author(s):  
Ricardo Palma Fraga ◽  
Ziho Kang ◽  
Jerry M. Crutchfield ◽  
Saptarshi Mandal

The role of the en route air traffic control specialist (ATCS) is vital to maintaining safety and efficiency within the National Airspace System (NAS). ATCSs must vigilantly scan the airspace under their control and adjacent airspaces using an En Route Automation Modernization (ERAM) radar display. The intent of this research is to provide an understanding of the expert controller visual search and aircraft conflict mitigation strategies that could be used as scaffolding methods during ATCS training. Interviews and experiments were conducted to elicit visual scanning and conflict mitigation strategies from the retired controllers who were employed as air traffic control instructors. The interview results were characterized and classified using various heuristics. In particular, representative visual scanpaths were identified, which accord with the interview results of the visual search strategies. The highlights of our findings include: (1) participants used systematic search patterns, such as circular, spiral, linear or quadrant-based, to extract operation-relevant information; (2) participants applied an information hierarchy when aircraft information was cognitively processed (altitude -> direction -> speed); (3) altitude or direction changes were generally preferred over speed changes when imminent potential conflicts were mitigated. Potential applications exist in the implementation of the findings into the training curriculum of candidates.


Author(s):  
Jamie D. Barrett ◽  
Brett Torrence ◽  
Michelle Bryant ◽  
Linda Pierce ◽  
Julia Buck

The primary mission of the Federal Aviation Administration (FAA) is to maintain the safety of the National Airspace System (NAS). As part of this mission, the FAA is tasked with ensuring that future air traffic controllers are adequately trained to perform the high-risk job of directing air traffic. The FAA Academy curriculum for newly hired controllers involves 3-4 months of intensive lessons and performance assessments. It has been suggested that this training program is quite stressful, and successful trainees tend to be those who can better manage stress. To support ATC trainees, researchers at the Civil Aerospace Medical Institute (CAMI) have conducted operational research to develop and evaluate a stress management training to help trainees manage their stress during training at the FAA Academy.


1992 ◽  
Vol 36 (17) ◽  
pp. 1326-1330 ◽  
Author(s):  
Richard E. Redding ◽  
John R. Cannon ◽  
Thomas L. Seamster

The Federal Aviation Administration has embarked on a major curriculum redesign effort to improve the training efficiency of en route air traffic controllers. Included in this effort was a comprehensive cognitive task analysis conducted in several phases, spanning several years. Eight different types of data collection and analysis procedures were used, resulting in an integrated model of controller expertise. This paper provides a description of controller expertise, and describes the training program under development. This is one of the first examples of cognitive task analysis being applied to study expertise in complex cognitive tasks performed in time-constrained, multi-tasking environments.


2018 ◽  
Vol 62 (10) ◽  
pp. 1403-1411 ◽  
Author(s):  
Christopher Neuhaus ◽  
Matthias Huck ◽  
Götz Hofmann ◽  
Michael St. Pierre ◽  
Markus A. Weigand ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document