scholarly journals On Limiting Distributions of Quantum Markov Chains

Author(s):  
Chaobin Liu ◽  
Nelson Petulante

In a quantum Markov chain, the temporal succession of states is modeled by the repeated action of a “bistochastic quantum operation” on the density matrix of a quantum system. Based on this conceptual framework, we derive some new results concerning the evolution of a quantum system, including its long-term behavior. Among our findings is the fact that the Cesàro limit of any quantum Markov chain always exists and equals the orthogonal projection of the initial state upon the eigenspace of the unit eigenvalue of the bistochastic quantum operation. Moreover, if the unit eigenvalue is the only eigenvalue on the unit circle, then the quantum Markov chain converges in the conventional sense to the said orthogonal projection. As a corollary, we offer a new derivation of the classic result describing limiting distributions of unitary quantum walks on finite graphs (Aharonov et al., 2001).

2010 ◽  
Vol 08 (05) ◽  
pp. 881-894 ◽  
Author(s):  
RAQUELINE AZEVEDO MEDEIROS SANTOS ◽  
RENATO PORTUGAL

Quantum walks play an important role in the area of quantum algorithms. Many interesting problems can be reduced to searching marked states in a quantum Markov chain. In this context, the notion of quantum hitting time is very important, because it quantifies the running time of the algorithms. Markov chain-based algorithms are probabilistic, therefore the calculation of the success probability is also required in the analysis of the computational complexity. Using Szegedy's definition of quantum hitting time, which is a natural extension of the definition of the classical hitting time, we present analytical expressions for the hitting time and success probability of the quantum walk on the complete graph.


2021 ◽  
pp. 2250001
Author(s):  
Ce Wang

Open quantum walks (OQWs) (also known as open quantum random walks) are quantum analogs of classical Markov chains in probability theory, and have potential application in quantum information and quantum computation. Quantum Bernoulli noises (QBNs) are annihilation and creation operators acting on Bernoulli functionals, and can be used as the environment of an open quantum system. In this paper, by using QBNs as the environment, we introduce an OQW on a general higher-dimensional integer lattice. We obtain a quantum channel representation of the walk, which shows that the walk is indeed an OQW. We prove that all the states of the walk are separable provided its initial state is separable. We also prove that, for some initial states, the walk has a limit probability distribution of higher-dimensional Gauss type. Finally, we show links between the walk and a unitary quantum walk recently introduced in terms of QBNs.


2021 ◽  
Vol 127 (9) ◽  
Author(s):  
W. Cai ◽  
J. Han ◽  
L. Hu ◽  
Y. Ma ◽  
X. Mu ◽  
...  

2010 ◽  
Vol 10 (5&6) ◽  
pp. 509-524
Author(s):  
M. Mc Gettrick

We investigate the quantum versions of a one-dimensional random walk, whose corresponding Markov Chain is of order 2. This corresponds to the walk having a memory of one previous step. We derive the amplitudes and probabilities for these walks, and point out how they differ from both classical random walks, and quantum walks without memory.


2013 ◽  
Vol 13 (5&6) ◽  
pp. 430-438
Author(s):  
Takuya Machida

Since a limit distribution of a discrete-time quantum walk on the line was derived in 2002, a lot of limit theorems for quantum walks with a localized initial state have been reported. On the other hand, in quantum probability theory, there are four notions of independence (free, monotone, commuting, and boolean independence) and quantum central limit theorems associated to each independence have been investigated. The relation between quantum walks and quantum probability theory is still unknown. As random walks are fundamental models in the Kolmogorov probability theory, can the quantum walks play an important role in quantum probability theory? To discuss this problem, we focus on a discrete-time 2-state quantum walk with a non-localized initial state and present a limit theorem. By using our limit theorem, we generate probability laws in the quantum central limit theorems from the quantum walk.


1986 ◽  
Vol 23 (01) ◽  
pp. 130-143 ◽  
Author(s):  
Donald M. Topkis

Move-to-front and move-to-back heuristics are considered for adaptively reordering routing tables in communications networks. Limiting properties are established for Markov chain models of these heuristics. The limiting distributions of the number of path attempts per call for the two heuristics and for a fixed random permutation are stochastically ordered.


1991 ◽  
Vol 28 (04) ◽  
pp. 886-892 ◽  
Author(s):  
Richard Cowan

Given a realisation of a Markov chain, one can count the numbers of state transitions of each type. One can ask how many realisations are there with these transition counts and the same initial state. Whittle (1955) has answered this question, by finding an explicit though complicated formula, and has also shown that each realisation is equally likely. In the analysis of DNA sequences which comprise letters from the set {A, C, G, T}, it is often useful to count the frequency of a pattern, say ACGCT, in a long sequence and compare this with the expected frequency for all sequences having the same start letter and the same transition counts (or ‘dinucleotide counts' as they are called in the molecular biology literature). To date, no exact method exists; this paper rectifies that deficiency.


Author(s):  
H. D. Miller

SummaryThis paper is essentially a continuation of the previous one (5) and the notation established therein will be freely repeated. The sequence {ξr} of random variables is defined on a positively regular finite Markov chain {kr} as in (5) and the partial sums and are considered. Let ζn be the first positive ζr and let πjk(y), the ‘ruin’ function or absorption probability, be defined by The main result (Theorem 1) is an asymptotic expression for πjk(y) for large y in the case when , the expectation of ξ1 being computed under the unique stationary distribution for k0, the initial state of the chain, and unconditional on k1.


2005 ◽  
Vol 03 (supp01) ◽  
pp. 87-95
Author(s):  
KURT JACOBS

To transmit classical information using a quantum system, the sender prepares the system in one of a set of possible states and sends it to the receiver. The receiver then makes a measurement on the system to obtain information about the senders choice of state. The amount of information which is accessible to the receiver depends upon the encoding and the measurement. Here we derive a bound on this information which generalizes the bound derived by Schumacher, Westmoreland and Wootters [Schumacher, Westmoreland and Wootters, Phys. Rev. Lett. 76, 3452 (1996)] to include inefficient measurements, and thus all quantum operations. This also allows us to obtain a generalization of a bound derived by Hall [Hall, Phys. Rev. A 55, 100 (1997)], and to show that the average reduction in the von Neumann entropy which accompanies a measurement is concave in the initial state, for all quantum operations.


Sign in / Sign up

Export Citation Format

Share Document