scholarly journals High-Efficiency Arbitrary Quantum Operation on a High-Dimensional Quantum System

2021 ◽  
Vol 127 (9) ◽  
Author(s):  
W. Cai ◽  
J. Han ◽  
L. Hu ◽  
Y. Ma ◽  
X. Mu ◽  
...  
Science ◽  
2019 ◽  
Vol 364 (6437) ◽  
pp. 260-263 ◽  
Author(s):  
Tiff Brydges ◽  
Andreas Elben ◽  
Petar Jurcevic ◽  
Benoît Vermersch ◽  
Christine Maier ◽  
...  

Entanglement is a key feature of many-body quantum systems. Measuring the entropy of different partitions of a quantum system provides a way to probe its entanglement structure. Here, we present and experimentally demonstrate a protocol for measuring the second-order Rényi entropy based on statistical correlations between randomized measurements. Our experiments, carried out with a trapped-ion quantum simulator with partition sizes of up to 10 qubits, prove the overall coherent character of the system dynamics and reveal the growth of entanglement between its parts, in both the absence and presence of disorder. Our protocol represents a universal tool for probing and characterizing engineered quantum systems in the laboratory, which is applicable to arbitrary quantum states of up to several tens of qubits.


2002 ◽  
Vol 16 (26) ◽  
pp. 3915-3937 ◽  
Author(s):  
A. H. EL KINANI ◽  
M. DAOUD

This article is an illustration of the construction of coherent and generalized intelligent states which has been recently proposed by us for an arbitrary quantum system.1 We treat the quantum system submitted to the infinite square well potential and the nonlinear oscillators. By means of the analytical representation of the coherent states à la Gazeau–Klauder and those à la Klauder–Perelomov, we derive the generalized intelligent states in analytical ways.


2021 ◽  
Author(s):  
Shiyou Lian

Starting from finding approximate value of a function, introduces the measure of approximation-degree between two numerical values, proposes the concepts of “strict approximation” and “strict approximation region”, then, derives the corresponding one-dimensional interpolation methods and formulas, and then presents a calculation model called “sum-times-difference formula” for high-dimensional interpolation, thus develops a new interpolation approach, that is, ADB interpolation. ADB interpolation is applied to the interpolation of actual functions with satisfactory results. Viewed from principle and effect, the interpolation approach is of novel idea, and has the advantages of simple calculation, stable accuracy, facilitating parallel processing, very suiting for high-dimensional interpolation, and easy to be extended to the interpolation of vector valued functions. Applying the approach to instance-based learning, a new instance-based learning method, learning using ADB interpolation, is obtained. The learning method is of unique technique, which has also the advantages of definite mathematical basis, implicit distance weights, avoiding misclassification, high efficiency, and wide range of applications, as well as being interpretable, etc. In principle, this method is a kind of learning by analogy, which and the deep learning that belongs to inductive learning can complement each other, and for some problems, the two can even have an effect of “different approaches but equal results” in big data and cloud computing environment. Thus, the learning using ADB interpolation can also be regarded as a kind of “wide learning” that is dual to deep learning.


2006 ◽  
Vol 04 (01) ◽  
pp. 55-61 ◽  
Author(s):  
ADÁN CABELLO

Suppose a quantum system is prepared in an arbitrary quantum state. How many yes-no questions about that system would you have to consider to prove that such questions have no predefined answers? Peres conjectured that the minimum number was 18, as in the case of the set found in 1995. Asher's conjecture has recently been proven correct: there are no sets with fewer than 18 questions. This is the end of a long story which began in 1967, when Kochen and Specker found a similar set requiring 117 questions.


2019 ◽  
Vol 17 (07) ◽  
pp. 1950052
Author(s):  
Ren-Ju Liu ◽  
Ming-Qiang Bai ◽  
Fan Wu ◽  
Yu-Chun Zhang

A scheme is proposed for cyclic-controlled quantum operation teleportation (CCQOT) for three sides with EPR and cluster states. Under the control of David, Alice can implement an unknown single-qubit unitary operation on the remote Bob’s quantum system, while Bob can execute a single-qubit unitary operation on Charlie’s quantum system and Charlie can also perform an unknown single-qubit unitary operation on Alice’s quantum system. Our scheme can be generalized to [Formula: see text]) agents involved in the cycle to realize the transmission of single-qubit operations. Moreover, by replacing the quantum channels, we can change the cyclic direction of controlled qunatum operation teleportation (CQOT) from clockwise to counterclockwise. In addition, we discuss our scheme in four types of noisy environments (amplitude-damping, phase-damping, bit-flip and phase-flip noisy environment), and use fidelity to analyze the amount of information lost in the process of CCQOT due to noise. The results show that the fidelity is determined by decoherence rate and amplitude parameters of the final state.


2014 ◽  
Vol 12 (03) ◽  
pp. 1450014 ◽  
Author(s):  
Ming-Ming Wang ◽  
Xiu-Bo Chen ◽  
Jin-Guang Chen ◽  
Yi-Xian Yang

In this paper, we propose a new version of quantum state sharing (QSTS) scheme of an arbitrary multi-qubit state. Then we extend the scheme to a general form of sharing an arbitrary multi-qudit state in the high-dimensional system. The schemes consider the most general case where an arbitrary quantum state can be shared among an arbitrary number of agents in a symmetric way that any agent can recover the state with the help of the others. Compared with a traditional QSTS scheme sharing an unknown state, our schemes are more efficient since the dealer only needs to perform a simpler measurement and consume less classical communication costs.


Sign in / Sign up

Export Citation Format

Share Document