scholarly journals Ex VivoExpansion of Human Mesenchymal Stem Cells in Defined Serum-Free Media

2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Sunghoon Jung ◽  
Krishna M. Panchalingam ◽  
Lawrence Rosenberg ◽  
Leo A. Behie

Human mesenchymal stem cells (hMSCs) are presently being evaluated for their therapeutic potential in clinical studies to treat various diseases, disorders, and injuries. To date, early-phase studies have indicated that the use of both autologous and allogeneic hMSCs appear to be safe; however, efficacy has not been demonstrated in recent late-stage clinical trials. Optimized cell bioprocessing protocols may enhance the efficacy as well as safety of hMSC therapeutics. Classical media used for generating hMSCs are typically supplemented with ill-defined supplements such as fetal bovine serum (FBS) or human-sourced alternatives. Ideally, culture media are desired to have well-defined serum-free formulations that support the efficient production of hMSCs while maintaining their therapeutic and differentiation capacity. Towards this objective, we review here current cell culture media for hMSCs and discuss medium development strategies.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Peter Mark ◽  
Mandy Kleinsorge ◽  
Ralf Gaebel ◽  
Cornelia A. Lux ◽  
Anita Toelk ◽  
...  

Human Mesenchymal Stem Cells (hMSCs) present a promising tool for regenerative medicine. However,ex vivoexpansion is necessary to obtain sufficient cells for clinical therapy. Conventional growth media usually contain the critical component fetal bovine serum. For clinical use, chemically defined media will be required. In this study, the capability of two commercial, chemically defined, serum-free hMSC growth media (MSCGM-CD and PowerStem) for hMSC proliferation was examined and compared to serum-containing medium (MSCGM). Immunophenotyping of hMSCs was performed using flow cytometry, and they were tested for their ability to differentiate into a variety of cell types. Although the morphology of hMSCs cultured in the different media differed, immunophenotyping displayed similar marker patterns (high expression of CD29, CD44, CD73, and CD90 cell surface markers and absence of CD45). Interestingly, the expression of CD105 was significantly lower for hMSCs cultured in MSCGM-CD compared to MSCGM. Both groups maintained mesenchymal multilineage differentiation potential. In conclusion, the serum-free growth medium is suitable for hMSC culture and comparable to its serum-containing counterpart. As the expression of CD105 has been shown to positively influence hMSC cardiac regenerative potential, the impact of CD105 expression onto clinical use after expansion in MSCGM-CD will have to be tested.


2013 ◽  
Vol 8 (4) ◽  
pp. 448-458 ◽  
Author(s):  
Irina N. Simões ◽  
Joana S. Boura ◽  
Francisco dos Santos ◽  
Pedro Z. Andrade ◽  
Carla M. P. Cardoso ◽  
...  

Author(s):  
Thora Bjorg Sigmarsdottir ◽  
Sarah McGarrity ◽  
James T. Yurkovich ◽  
Óttar Rolfsson ◽  
Ólafur Eysteinn Sigurjónsson

Since their initial discovery in 1976, mesenchymal stem cells (MSCs) have been gathering interest as a possible tool to further the development and enhancement of various therapeutics within regenerative medicine. However, our current understanding of both metabolic function and existing differences within the varying cell lineages (e.g., cells in either osteogenesis or adipogenesis) is severely lacking making it more difficult to fully realize the therapeutic potential of MSCs. Here, we reconstruct the MSC metabolic network to understand the activity of various metabolic pathways and compare their usage under different conditions and use these models to perform experimental design. We present three new genome-scale metabolic models (GEMs) each representing a different MSC lineage (proliferation, osteogenesis, and adipogenesis) that are biologically feasible and have distinctive cell lineage characteristics that can be used to explore metabolic function and increase our understanding of these phenotypes. We present the most distinctive differences between these lineages when it comes to enriched metabolic subsystems and propose a possible osteogenic enhancer. Taken together, we hope these mechanistic models will aid in the understanding and therapeutic potential of MSCs.


Cytotherapy ◽  
2014 ◽  
Vol 16 (4) ◽  
pp. S111 ◽  
Author(s):  
S.H. Mei ◽  
M. Salkhordeh ◽  
F. Xue ◽  
J. Zhang ◽  
I. Watpool ◽  
...  

2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Maria C. Naskou ◽  
Scarlett M. Sumner ◽  
Anna Chocallo ◽  
Hannah Kemelmakher ◽  
Merrilee Thoresen ◽  
...  

Cytotherapy ◽  
2014 ◽  
Vol 16 (4) ◽  
pp. S70
Author(s):  
Z. Han ◽  
Y. Wang ◽  
Y. Chi ◽  
S. Yan ◽  
A. Mao ◽  
...  

2017 ◽  
Vol 18 (8) ◽  
pp. 1779 ◽  
Author(s):  
Myung-Suk Lee ◽  
Christine Youn ◽  
Jeong Kim ◽  
Byoung Park ◽  
Jongchan Ahn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document