scholarly journals Preparation, Characterization, and Activity Evaluation of CuO/F-TiO2Photocatalyst

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Zhang Jinfeng ◽  
Yang Yunguang ◽  
Liu Wei

CuO/F-TiO2nanoparticle photocatalyst was prepared by ball milling. The photocatalyst was characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, UV-Vis diffuse reflectance spectroscopy, and photoluminescence emission spectroscopy. The photocatalytic activity was evaluated by photocatalytic oxidation of rhodamine B and reduction of Cr2O7 2−. The results showed that, for F-TiO2photocatalyst, the photooxidation activity increases remarkably with the increasing amount of NH4F up to 1.0 g, and the photoreduction activity decreases gradually with the increase in the amounts of NH4F. For the CuO/F-TiO2photocatalyst, the photoreduction activity increases greatly with the increase in the amount of doped p-CuO up to 1.0 wt.%, and the photooxidation activity decreases rapidly with the increase in the amounts of doped p-CuO. Compared with pure TiO2, the photoabsorption wavelength range of the CuO/F-TiO2and F-TiO2photocatalysts red shifts and improves the utilization of the total spectrum. The effect of ball milling time on the photocatalytic activity of the photocatalysts was also investigated. The mechanisms of influence on the photocatalytic activity of the photocatalysts were also discussed.

2011 ◽  
Vol 399-401 ◽  
pp. 1241-1245
Author(s):  
Jin Feng Zhang ◽  
Xiao Ling Yu ◽  
Wei Liu ◽  
Shi Fu Chen

Orthorhombic Nb2WO8 was synthesized by solid state reaction in Nb2O5-WO3 system. Heterojunction photocatalyst Nb2WO8/ZnO was prepared by ball milling. The structural and optical properties of the photocatalyst were characterized by X-ray powder diffraction, transmission electron microscopy, UV–vis diffuse reflectance spectroscopy, and fluorescence emission spectroscopy.The photocatalytic activity was evaluated by photocatalytic oxidation of rhodamine B and reduction of Cr6+. The results showed that the photocatalytic activity of the Nb2WO8/ZnO was higher than that of ZnO. When the amount of doped Nb2WO8 was 10 wt.% and the sample was ball milled for 9 h, the Nb2WO8/ZnO showed the optimal photocatalytic activity. Effect of ball milling time on the photocatalytic activity was also investigated. The mechanisms of the increase in the photocatalytic activity were discussed by the valence band principle.


2016 ◽  
Vol 35 (6) ◽  
pp. 559-566 ◽  
Author(s):  
Elaheh Esmaeili ◽  
Mohammad Sabet ◽  
Masoud Salavati-Niasari ◽  
Kamal Saberyan

AbstractPbS nanostructures were synthesized successfully via hydrothermal approach with a new precursor. The products were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV–Vis diffuse reflectance spectroscopy (DRS). The effect of different sulfur sources were investigated on product size and morphology.


2014 ◽  
Vol 898 ◽  
pp. 23-26
Author(s):  
Jing Li ◽  
Wei Sun ◽  
Wei Min Dai ◽  
Yong Cai Zhang

TiO2/SnS2 nanocomposite was synthesized via hydrothermal treatment of tin (IV) chloride pentahydrate, thioacetamide and TiO2 nanotubes in deionized water at 150 °C for 3 h. The structure, composition and optical property of the as-synthesized nanocomposite were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy and UV-vis diffuse reflectance spectra, and its photocatalytic property was tested in the reduction of aqueous Cr6+ under visible-light (λ > 420 nm) irradiation. It was observed that TiO2 nanotubes exhibited no photocatalytic activity, whereas TiO2/SnS2 nanocomposite exhibited photocatalytic activity in the reduction of aqueous Cr6+ under visible-light (λ > 420 nm) irradiation.


2014 ◽  
Vol 496-500 ◽  
pp. 297-300 ◽  
Author(s):  
Bi Tao Liu ◽  
Liang Liang Tian ◽  
Ling Ling Peng

A series of composites of the high photoactivity of {001} facets exposed BiOCl and grapheme sheets (GS) were synthesized via a one-step hydrothermal reaction. The obtained BiOCl/GS photocatalysts were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy, transmission electron microscopy (TEM), Ultraviolet-visible (UV-Vis) diffuse reflectance spectroscopy. The as-prepared BiOCl/GS photocatalyst showed enhanced photocatalytic activity for the degradation of methyl orange (MO) under UV and visible light (λ > 400 nm). The enhanced photocatalytic activity could be attributed to oxygen vacancies of the {001} facets of BiOCl/GS and the high migration efficiency of photo-induced electrons, which could suppress the charge recombination effectively.


RSC Advances ◽  
2015 ◽  
Vol 5 (54) ◽  
pp. 43473-43479 ◽  
Author(s):  
Yanli Xu ◽  
Mengmeng Lv ◽  
Hanbiao Yang ◽  
Qi Chen ◽  
Xueting Liu ◽  
...  

The BiVO4/MIL-101 composite and pure materials were characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, UV-vis diffuse reflectance absorption spectra and photoluminescence emission spectra.


Catalysts ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 394 ◽  
Author(s):  
Xinling Wang ◽  
Di Zhu ◽  
Yan Zhong ◽  
Dianhui Wang ◽  
Chaohao Hu

The pyrochlore-type (Sr0.6Bi0.305)2Bi2O7 (SBO) containing Bi3+ and Bi5+ mixed valent states was first investigated as a photocatalyst in our very recent work. To further improve the photocatalytic performance, AgBr/SBO heterostructured composites were synthesized by using a deposition-precipitation method. The characterization of phase structure, morphology, microstructure, elemental composition, and optical properties of the obtained products were performed using X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM)TEM, X-ray photoelectron spectroscopy (XPS), UV-visible diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic activity of samples was evaluated by degrading methylene blue under visible light illumination. AgBr/SBO composites possess high stability and significantly enhanced photocatalytic performance. The improvement of photocatalytic activity is due to the enhanced light absorption and the separation of photoinduced electrons and holes on the interface of AgBr/SBO heterostructured composites.


2010 ◽  
Vol 657 ◽  
pp. 62-74 ◽  
Author(s):  
Rajesh J. Tayade ◽  
D.L. Key

TiO2 derived nanotubes were prepared by hydrothermal treatment of TiO2 (anatase) powder in 10 M NaOH aqueous solution. The crystalline structure, band gap, and morphology of the TiO2 nanotubes were determined by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), Transmission Electron microscopy (TEM) and N2 adsorption (BET) at 77 K, respectively. It was observed that the surface area of the nanotubes was increased twelve times compared with TiO2 (anatase) powder. The results demonstrated that the photocatalytic activity of TiO2 nanotubes was higher than that of TiO2 (anatase) powder. The photocatalytic activity of the nanotubes was evaluated in presence of sunlight by degradation of aqueous nitrobenzene. Complete degradation of nitrobenzene was obtained in 4 hours using TiO2 nanotubes whereas 85% degradation was observed in case of TiO2 (anatase).


2018 ◽  
Vol 89 (7) ◽  
pp. 1332-1339
Author(s):  
Yehua Sun ◽  
Yuzhuo Luo ◽  
Yaofeng Zhu ◽  
Yaqin Fu

Biomass-derived silk fibroin (SF)-doped NaTaO3 catalysts were successfully synthesized by a simple hydrothermal process using SF as the dopant. The as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS) analyses. The samples were tested as photocatalysts in the degradation of methylene blue under UV and visible light. XRD results showed the monoclinic structure of NaTaO3 lacking significant structural changes after anion doping. SEM and TEM images revealed the nanocubic morphology of the samples, the crystal particle sizes of which were about 100–300 nm. The XPS spectrum showed the peak of Ta4p3&N1s, indicating the combination of N and Ta. The UV-vis DRS results of the samples revealed a cut-off edge that red shifted from 315 nm of the pure NaTaO3 to 324 nm of the SF-doped counterpart. SF doping helped narrow the band gap and rendered the prepared sample sensitive to visible light. Under UV and visible-light irradiation, SF-doped NaTaO3 exhibited higher photocatalytic activity than that the undoped compound. SF-doped NaTaO3 samples also exhibited excellent stability during the recycling photocatalytic process.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yunling Zou ◽  
Xianshou Huang ◽  
Tao Yu ◽  
Xiaoqiang Tong ◽  
Yan Li ◽  
...  

Abstract Cu-doped TiO2 having a brookite phase and showing enhanced visible light photocatalytic activity was synthesized using a mild solvothermal method. The as-prepared samples were characterized by various techniques, such as X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, UV-Vis diffuse reflectance spectroscopy. Photocatalytic activity of Cu-doped brookite TiO2 nanoparticles was evaluated by photodegradation of methylene blue under visible light irradiation. The X-ray diffraction analysis showed that the crystallite size of Cu-doped brookite TiO2 samples decreased with the increase of Cu concentration in the samples. The UV-Vis diffuse reflectance spectroscopy analysis of the Cu-doped TiO2 samples showed a shift to lower energy levels in the band gap compared with that of bare phase brookite TiO2. Cu doped brookite TiO2 can obviously improve its visible light photocatalytic activity because of Cu ions acting as electron acceptors and inhibiting electron-hole recombination. The brookite TiO2 sample with 7.0 wt.% Cu showed the highest photocatalytic activity and the corresponding degradation rate of MB (10 mg/L) reached to 87 % after visible light illumination for 120 min, much higher than that of bare brookite TiO2 prepared under the same conditions (78 %).


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Sujing Yu ◽  
Juncheng Hu ◽  
Jinlin Li

Self assembly of TiO2/CdS mesoporous microspheres was synthesized via hydrothermal method. The samples were characterized by X-ray powder diffraction (XRD), ultraviolet-visible diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM), energy-dispersive spectroscopy analysis (EDS), high-resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), and photoluminescence spectra (PL). The as-synthesized TiO2/CdS mesoporous microspheres showed superior photocatalytic activity for the degradation of RhB under either visible light or simulated sunlight irradiation; the 10 wt% TiO2/CdS sample showed the best performance. Moreover, this catalyst showed improved stability, and the activity did not decrease significantly after four recycles. The heterojunction between TiO2and CdS may be favorable for the transport of photoinduced electrons from CdS to TiO2. In addition, the mesoporous structure could increase the utilization of light energy and facilitate the diffusion of reactants and products during the photocatalytic reaction.


Sign in / Sign up

Export Citation Format

Share Document