scholarly journals Using Different Approaches to Approximate a Pareto Front for a Multiobjective Evolutionary Algorithm: Optimal Thinning Regimes forEucalyptus fastigata

2012 ◽  
Vol 2012 ◽  
pp. 1-27 ◽  
Author(s):  
Oliver Chikumbo

A stand-level, multiobjective evolutionary algorithm (MOEA) for determining a set of efficient thinning regimes satisfying two objectives, that is, value production for sawlog harvesting and volume production for a pulpwood market, was successfully demonstrated for aEucalyptus fastigatatrial in Kaingaroa Forest, New Zealand. The MOEA approximated the set of efficient thinning regimes (with a discontinuous Pareto front) by employing a ranking scheme developed by Fonseca and Fleming (1993), which was a Pareto-based ranking (a.k.a Multiobjective Genetic Algorithm—MOGA). In this paper we solve the same problem using an improved version of a fitness sharing Pareto ranking algorithm (a.k.a Nondominated Sorting Genetic Algorithm—NSGA II) originally developed by Srinivas and Deb (1994) and examine the results. Our findings indicate that NSGA II approximates the entire Pareto front whereas MOGA only determines a subdomain of the Pareto points.

Author(s):  
Ashraf Osman Ibrahim ◽  
Siti Mariyam Shamsuddin ◽  
Sultan Noman Qasem

Recently, hybrid algorithms have received considerable attention from a number of researchers. This paper presents a hybrid of the multiobjective evolutionary algorithm to gain a better accuracy of the fi nal solutions. The aim of using the hybrid algorithm is to improve the multiobjective evolutionary algorithm performance in terms of the enhancement of all the individuals in the population and increase the quality of the Pareto optimal solutions. The multiobjective evolutionary algorithm used in this study is a nondominated sorting genetic algorithm-II (NSGA-II) together with its hybrid, the backpropagation algorithm (BP), which is used as a local search algorithm to optimize the accuracy and complexity of the three-term backpropagation (TBP) network. The outcome positively demonstrates that the hybrid algorithm is able to improve the classification performance with a smaller number of hidden nodes and is effective in multiclass classifi cation problems. Furthermore, the results indicate that the proposed hybrid method is a potentially useful classifi er for enhancing the classification process ability when compared with the multiobjective genetic algorithm based on the TBP network (MOGATBP) and certain other methods found in the literature.  


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Vimal Savsani ◽  
Vivek Patel ◽  
Bhargav Gadhvi ◽  
Mohamed Tawhid

Most of the modern multiobjective optimization algorithms are based on the search technique of genetic algorithms; however the search techniques of other recently developed metaheuristics are emerging topics among researchers. This paper proposes a novel multiobjective optimization algorithm named multiobjective heat transfer search (MOHTS) algorithm, which is based on the search technique of heat transfer search (HTS) algorithm. MOHTS employs the elitist nondominated sorting and crowding distance approach of an elitist based nondominated sorting genetic algorithm-II (NSGA-II) for obtaining different nondomination levels and to preserve the diversity among the optimal set of solutions, respectively. The capability in yielding a Pareto front as close as possible to the true Pareto front of MOHTS has been tested on the multiobjective optimization problem of the vehicle suspension design, which has a set of five second-order linear ordinary differential equations. Half car passive ride model with two different sets of five objectives is employed for optimizing the suspension parameters using MOHTS and NSGA-II. The optimization studies demonstrate that MOHTS achieves the better nondominated Pareto front with the widespread (diveresed) set of optimal solutions as compared to NSGA-II, and further the comparison of the extreme points of the obtained Pareto front reveals the dominance of MOHTS over NSGA-II, multiobjective uniform diversity genetic algorithm (MUGA), and combined PSO-GA based MOEA.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Dan Qu ◽  
Xianfeng Ding ◽  
Hongmei Wang

In general, the proximities to a certain diversity along the front and the Pareto front have the equal importance for solving multiobjective optimization problems (MOPs). However, most of the existing evolutionary algorithms give priority to the proximity over the diversity. To improve the diversity and decrease execution time of the nondominated sorting genetic algorithm II (NSGA-II), an improved algorithm is presented in this paper, which adopts a new vector ranking scheme to decrease the whole runtime and utilize Part and Select Algorithm (PSA) to maintain the diversity. In this algorithm, a more efficient implementation of nondominated sorting, namely, dominance degree approach for nondominated sorting (DDA-NS), is presented. Moreover, an improved diversity preservation mechanism is proposed to select a well-diversified set out of an arbitrary given set. By embedding PSA and DDA-NS into NSGA-II, denoted as DNSGA2-PSA, the whole runtime of the algorithm is decreased significantly and the exploitation of diversity is enhanced. The computational experiments show that the combination of both (DDA-NS, PSA) to NSGA-II is better than the isolated use cases, and DNSGA2-PSA still performs well in the high-dimensional cases.


2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
Guiliang Gong ◽  
Qianwang Deng ◽  
Xuran Gong ◽  
Like Zhang ◽  
Haibin Wang ◽  
...  

A new closed-loop supply chain logistics network of vehicle routing problem with simultaneous pickups and deliveries (VRPSPD) dominated by remanufacturer is constructed, in which the customers are originally divided into three types: distributors, recyclers, and suppliers. Furthermore, the fuel consumption is originally added to the optimization objectives of the proposed VRPSPD. In addition, a bee evolutionary algorithm guiding nondominated sorting genetic algorithm II (BEG-NSGA-II) with a two-stage optimization mechanism is originally designed to solve the proposed VRPSPD model with three optimization objectives: minimum fuel consumption, minimum waiting time, and the shortest delivery distance. The proposed BEG-NSGA-II could conquer the disadvantages of traditional nondominated sorting genetic algorithm II (NSGA-II) and algorithms with a two-stage optimization mechanism. Finally, the validity and feasibility of the proposed model and algorithm are verified by simulating an engineering machinery remanufacturing company’s reverse logistics and another three test examples.


2012 ◽  
Vol 3 (4) ◽  
pp. 20-42
Author(s):  
André R. da Cruz

This paper presents a new procedure for the nondominated sorting with constraint handling to be used in a multiobjective evolutionary algorithm. The strategy uses a sorting algorithm and binary search to classify the solutions in the correct level of the Pareto front. In a problem with objective functions, using solutions in the population, the original nondominated sorting algorithm, used by NSGA-II, has always a computational cost of in a naïve implementation. The complexity of the new algorithm can vary from in the best case and in the worst case. A experiment was executed in order to compare the new algorithm with the original and another improved version of the Deb’s algorithm. Results reveal that the new strategy is much better than other versions when there are many levels in Pareto front. It is also concluded that is interesting to alternate the new algorithm and the improved Deb’s version during the evolution of the evolutionary algorithm.


2022 ◽  
Vol 204 ◽  
pp. 111999
Author(s):  
Hanting Wu ◽  
Yangrui Huang ◽  
Lei Chen ◽  
Yingjie Zhu ◽  
Huaizheng Li

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
K. Vijayakumar

Congestion management is one of the important functions performed by system operator in deregulated electricity market to ensure secure operation of transmission system. This paper proposes two effective methods for transmission congestion alleviation in deregulated power system. Congestion or overload in transmission networks is alleviated by rescheduling of generators and/or load shedding. The two objectives conflicting in nature (1) transmission line over load and (2) congestion cost are optimized in this paper. The multiobjective fuzzy evolutionary programming (FEP) and nondominated sorting genetic algorithm II methods are used to solve this problem. FEP uses the combined advantages of fuzzy and evolutionary programming (EP) techniques and gives better unique solution satisfying both objectives, whereas nondominated sorting genetic algorithm (NSGA) II gives a set of Pareto-optimal solutions. The methods propose an efficient and reliable algorithm for line overload alleviation due to critical line outages in a deregulated power markets. The quality and usefulness of the algorithm is tested on IEEE 30 bus system.


Author(s):  
Andrew J. Robison ◽  
Andrea Vacca

A computationally efficient gerotor gear generation algorithm has been developed that creates elliptical-toothed gerotor gear profiles, identifies conditions to guarantee a feasible geometry, evaluates several performance objectives, and is suitable to use for geometric optimization. Five objective functions are used in the optimization: minimize pump size, flow ripple, adhesive wear, subsurface fatigue (pitting), and tooth tip leakage. The gear generation algorithm is paired with the NSGA-II optimization algorithm to minimize each of the objective functions subject to the constraints to define a feasible geometry. The genetic algorithm is run with a population size of 1000 for a total of 500 generations, after which a clear Pareto front is established and displayed. A design has been selected from the Pareto front which is a good compromise between each of the design objectives and can be scaled to any desired displacement. The results of the optimization are also compared to two profile geometries found in literature. Two alternative geometries are proposed that offer much lower adhesive wear while respecting the size constraints of the published profiles and are thought to be an improvement in design.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Maoqing Zhang ◽  
Lei Wang ◽  
Zhihua Cui ◽  
Jiangshan Liu ◽  
Dong Du ◽  
...  

Fast nondominated sorting genetic algorithm II (NSGA-II) is a classical method for multiobjective optimization problems and has exhibited outstanding performance in many practical engineering problems. However, the tournament selection strategy used for the reproduction in NSGA-II may generate a large amount of repetitive individuals, resulting in the decrease of population diversity. To alleviate this issue, Lévy distribution, which is famous for excellent search ability in the cuckoo search algorithm, is incorporated into NSGA-II. To verify the proposed algorithm, this paper employs three different test sets, including ZDT, DTLZ, and MaF test suits. Experimental results demonstrate that the proposed algorithm is more promising compared with the state-of-the-art algorithms. Parameter sensitivity analysis further confirms the robustness of the proposed algorithm. In addition, a two-objective network topology optimization model is then used to further verify the proposed algorithm. The practical comparison results demonstrate that the proposed algorithm is more effective in dealing with practical engineering optimization problems.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 260 ◽  
Author(s):  
Radosław Winiczenko ◽  
Krzysztof Górnicki ◽  
Agnieszka Kaleta

A precise determination of the mass diffusion coefficient and the mass Biot number is indispensable for deeper mass transfer analysis that can enable finding optimum conditions for conducting a considered process. The aim of the article is to estimate the mass diffusion coefficient and the mass Biot number by applying nondominated sorting genetic algorithm (NSGA) II genetic algorithms. The method is used in drying. The maximization of coefficient of correlation (R) and simultaneous minimization of mean absolute error (MAE) and root mean square error (RMSE) between the model and experimental data were taken into account. The Biot number and moisture diffusion coefficient can be determined using the following equations: Bi = 0.7647141 + 10.1689977s − 0.003400086T + 948.715758s2 + 0.000024316T2 − 0.12478256sT, D = 1.27547936∙10−7 − 2.3808∙10−5s − 5.08365633∙10−9T + 0.0030005179s2 + 4.266495∙10−11T2 + 8.33633∙10−7sT or Bi = 0.764714 + 10.1689091s − 0.003400089T + 948.715738s2 + 0.000024316T2 − 0.12478252sT, D = 1.27547948∙10−7 − 2.3806∙10−5s − 5.08365753∙10−9T + 0.0030005175s2 + 4.266493∙10−11T2 + 8.336334∙10−7sT. The results of statistical analysis for the Biot number and moisture diffusion coefficient equations were as follows: R = 0.9905672, MAE = 0.0406375, RMSE = 0.050252 and R = 0.9905611, MAE = 0.0406403 and RMSE = 0.050273, respectively.


Sign in / Sign up

Export Citation Format

Share Document