scholarly journals A Comparison of Parametric and Sample-Based Message Representation in Cooperative Localization

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Jaime Lien ◽  
Ulric J. Ferner ◽  
Warakorn Srichavengsup ◽  
Henk Wymeersch ◽  
Moe Z. Win

Location awareness is a key enabling feature and fundamental challenge in present and future wireless networks. Most existing localization methods rely on existing infrastructure and thus lack the flexibility and robustness necessary for large ad hoc networks. In this paper, we build upon SPAWN (sum-product algorithm over a wireless network), which determines node locations through iterative message passing, but does so at a high computational cost. We compare different message representations for SPAWN in terms of performance and complexity and investigate several types of cooperation based on censoring. Our results, based on experimental data with ultra-wideband (UWB) nodes, indicate that parametric message representation combined with simple censoring can give excellent performance at relatively low complexity.

Author(s):  
Tao Wang ◽  
Xiaohu Tang

It is a challenging issue to provide a secure and conditional anonymous authentication scheme in vehicle ad hoc networks(VANETs) with low storage space and computational cost. In 2008, Lu et al. [8] proposed an conditional privacy preservation scheme called ECPP protocol. The ECPP protocol provides conditional privacy preservation to vehicles in VANETs, that is, on one hand vehicles can achieve anonymous authentication in the network, on the other hand allow to be traced and revoked if necessary. However, ECPP scheme suffers from large storage and high computational cost. In our scheme, an improved protocol based on the concept of ECPP protocol has been proposed, which uses minimal interaction steps, little storage space and less computation overhead to achieve more efficiency conditional privacy preservation(MECPP) scheme in VANETs.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Trung Kien Vu ◽  
Sungoh Kwon

We propose a mobility-assisted on-demand routing algorithm for mobile ad hoc networks in the presence of location errors. Location awareness enables mobile nodes to predict their mobility and enhances routing performance by estimating link duration and selecting reliable routes. However, measured locations intrinsically include errors in measurement. Such errors degrade mobility prediction and have been ignored in previous work. To mitigate the impact of location errors on routing, we propose an on-demand routing algorithm taking into account location errors. To that end, we adopt the Kalman filter to estimate accurate locations and consider route confidence in discovering routes. Via simulations, we compare our algorithm and previous algorithms in various environments. Our proposed mobility prediction is robust to the location errors.


2007 ◽  
Vol 7 (4) ◽  
pp. 39-48
Author(s):  
Eun-Ju Lee ◽  
Kwoun-Ig Lee ◽  
Heung-Soo Kim ◽  
Doo-Yeong Yang ◽  
Mi-Kyoung Lee ◽  
...  

Author(s):  
Farhan H. Mirani ◽  
Anthony Busson ◽  
Cedric Adjih

In vehicular ad hoc networks (VANETs), for a large number of applications, the destination of relevant information such as alerts, is the whole set of vehicles located inside a given area. Therefore dissemination with efficient broadcast is an essential communication primitive. One of the families of broadcast protocols suitable for such networks, is the family of delay-based broadcast protocols, where farthest receivers retransmit first and where transmissions also act as implicit acknowledgements. For lossless networks, such protocols may approach the optimum efficiency. However with realistic loss models of VANET wireless communication, their performance is noticeably degraded. This is because packet losses have a double effect: directly on the amount of successfully received packets and indirectly with implicit acknowledgement misses. In this article, in order to combat the effects of packet losses, we combine delay-based broadcast with network coding, through a new protocol: Delay-based Opportunistic Network Coding protocol (DONC). By design, DONC aims at cancelling the twofold effects of packet and implicit acknowledgement losses. We describe the details of the DONC protocol, and we study its behavior, with realistic models and simulations. Results illustrate the excellent performance of the protocol.


Author(s):  
Hussein Al-Bahadili ◽  
Ali Maqousi ◽  
Reyadh S. Naoum

The location-aided routing scheme 1 (LAR-1) and probabilistic algorithms are combined together into a new algorithm for route discovery in mobile ad hoc networks (MANETs) called LAR-1P. Simulation results demonstrated that the LAR-1P algorithm reduces the number of retransmissions as compared to LAR-1 without sacrificing network reachability. Furthermore, on a sub-network (zone) scale, the algorithm provides an excellent performance in high-density zones, while in low-density zones; it preserves the performance of LAR-1. This paper provides a detailed analysis of the performance of the LAR-1P algorithm through various simulations, where the actual numerical values for the number of retransmissions and reachability in high- and low-density zones were computed to demonstrate the effectiveness and significance of the algorithm and how it provides better performance than LAR-1 in high-density zones. In addition, the effect of the total number of nodes on the average network performance is also investigated.


2019 ◽  
Vol 15 (6) ◽  
pp. 155014771985491
Author(s):  
Yong Xie ◽  
Songsong Zhang ◽  
Xiang Li ◽  
Yanggui Li

Vehicular ad hoc networks have emerged as a promising approach to increasing road safety and efficiency. Vehicles periodically broadcast traffic-related status messages. Message authentication is a common way for ensuring information reliability, but it is an unaffordable computational cost for single vehicle. In this article, we propose an efficient cooperative message authentication based on reputation mechanism. In the proposed scheme, reputation model is used to assess authentication efforts of vehicles, which enhances initiative for cooperative message authentication and inhabits selfish behavior; sequence optimization algorithm solves messages overflowing on condition limited computation of onboard unit and improves the speed of message authentication at the premise of ensuring the reliability of message authentication. Simulation results show that our scheme presents a nice performance of authentication efficiency, packet loss ratio, and missing detection ratio.


2018 ◽  
Vol 8 (12) ◽  
pp. 2546
Author(s):  
Tao Wang ◽  
Xiaohu Tang

It is a challenging issue to provide a secure and conditional anonymous authentication scheme in vehicle ad hoc networks (VANETs) with low storage space and computational cost. In 2008, Lu et al. proposed a conditional privacy preservation scheme called efficiency conditional privacy preservation (ECPP) protocol. The ECPP protocol provides conditional privacy preservation to vehicles in VANETs. That is, on one hand vehicles can achieve anonymous authentication in the network, on the other hand, allow to be traced and revoked if necessary. However, ECPP scheme suffers from high computational cost and large storage. In this scheme, an improved protocol based on the concept of ECPP protocol has been proposed to achieve more efficiency conditional privacy preservation (MECPP) scheme in VANETs. Comparing with ECCP, the computational cost of the proposed scheme has been decreased by about 54 % while the communication overhead has been reduced by about 10 % . At the same time, a lot of storage space has been saved.


Sign in / Sign up

Export Citation Format

Share Document