scholarly journals On a Differential Equation Involving Hilfer-Hadamard Fractional Derivative

2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
M. D. Qassim ◽  
K. M. Furati ◽  
N.-E. Tatar

This paper studies a fractional differential inequality involving a new fractional derivative (Hilfer-Hadamard type) with a polynomial source term. We obtain an exponent for which there does not exist any global solution for the problem. We also provide an example to show the existence of solutions in a wider space for some exponents.

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Assia Guezane-Lakoud ◽  
Adem Kılıçman

Abstract The purpose of this study is to discuss the existence of solutions for a boundary value problem at resonance generated by a nonlinear differential equation involving both right and left Caputo fractional derivatives. The proofs of the existence of solutions are mainly based on Mawhin’s coincidence degree theory. We provide an example to illustrate the main result.


Mathematics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 630
Author(s):  
Dandan Yang ◽  
Chuanzhi Bai

In this paper, we investigate the existence of solutions for a class of anti-periodic fractional differential inclusions with ψ -Riesz-Caputo fractional derivative. A new definition of ψ -Riesz-Caputo fractional derivative of order α is proposed. By means of Contractive map theorem and nonlinear alternative for Kakutani maps, sufficient conditions for the existence of solutions to the fractional differential inclusions are given. We present two examples to illustrate our main results.


2006 ◽  
Vol 2006 ◽  
pp. 1-18 ◽  
Author(s):  
Katica (Stevanovic) Hedrih

We considered the problem on transversal oscillations of two-layer straight bar, which is under the action of the lengthwise random forces. It is assumed that the layers of the bar were made of nonhomogenous continuously creeping material and the corresponding modulus of elasticity and creeping fractional order derivative of constitutive relation of each layer are continuous functions of the length coordinate and thickness coordinates. Partial fractional differential equation and particular solutions for the case of natural vibrations of the beam of creeping material of a fractional derivative order constitutive relation in the case of the influence of rotation inertia are derived. For the case of natural creeping vibrations, eigenfunction and time function, for different examples of boundary conditions, are determined. By using the derived partial fractional differential equation of the beam vibrations, the almost sure stochastic stability of the beam dynamic shapes, corresponding to thenth shape of the beam elastic form, forced by a bounded axially noise excitation, is investigated. By the use of S. T. Ariaratnam's idea, as well as of the averaging method, the top Lyapunov exponent is evaluated asymptotically when the intensity of excitation process is small.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 289
Author(s):  
Daniel Cao Labora ◽  
José António Tenreiro Machado

This manuscript reanalyses the Bagley–Torvik equation (BTE). The Riemann–Liouville fractional differential equation (FDE), formulated by R. L. Bagley and P. J. Torvik in 1984, models the vertical motion of a thin plate immersed in a Newtonian fluid, which is held by a spring. From this model, we can derive an FDE for the particular case of lacking the spring. Here, we find conditions for the source term ensuring that the solutions to the equation of the motion are bounded, which has a clear physical meaning.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 94 ◽  
Author(s):  
Idris Ahmed ◽  
Poom Kumam ◽  
Kamal Shah ◽  
Piyachat Borisut ◽  
Kanokwan Sitthithakerngkiet ◽  
...  

This paper presents a class of implicit pantograph fractional differential equation with more general Riemann-Liouville fractional integral condition. A certain class of generalized fractional derivative is used to set the problem. The existence and uniqueness of the problem is obtained using Schaefer’s and Banach fixed point theorems. In addition, the Ulam-Hyers and generalized Ulam-Hyers stability of the problem are established. Finally, some examples are given to illustrative the results.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Hoa Ngo Van ◽  
Vu Ho

The aim of the paper is to consider the existence and uniqueness of solution of the fractional differential equation with a positive constant coefficient under Hilfer fractional derivative by using the fixed-point theorem. We also prove the bounded and continuous dependence on the initial conditions of solution. Besides, Hyers–Ulam stability and Hyers–Ulam–Rassias stability are discussed. Finally, we provide an example to demonstrate our main results.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Chen Yang ◽  
Jieming Zhang

We are concerned with the existence and uniqueness of positive solutions for the following nonlinear perturbed fractional two-point boundary value problem:D0+αu(t)+f(t,u,u',…,u(n-2))+g(t)=0, 0<t<1, n-1<α≤n, n≥2,u(0)=u'(0)=⋯=u(n-2)(0)=u(n-2)(1)=0, whereD0+αis the standard Riemann-Liouville fractional derivative. Our analysis relies on a fixed-point theorem of generalized concave operators. An example is given to illustrate the main result.


Sign in / Sign up

Export Citation Format

Share Document