scholarly journals Life Span of Positive Solutions for the Cauchy Problem for the Parabolic Equations

2012 ◽  
Vol 2012 ◽  
pp. 1-16
Author(s):  
Yusuke Yamauchi

Since 1960's, the blow-up phenomena for the Fujita type parabolic equation have been investigated by many researchers. In this survey paper, we discuss various results on the life span of positive solutions for several superlinear parabolic problems. In the last section, we introduce a recent result by the author.

Author(s):  
Ryuichi Suzuki ◽  
Noriaki Umeda

We consider non-negative solutions of the Cauchy problem for quasilinear parabolic equations ut = Δum + f(u), where m > 1 and f(ξ) is a positive function in ξ > 0 satisfying f(0) = 0 and a blow-up conditionWe show that if ξm+2/N /(−log ξ)β = O(f(ξ)) as ξ ↓ 0 for some 0 < β < 2/(mN + 2), one of the following holds: (i) all non-trivial solutions blow up in finite time; (ii) every non-trivial solution with an initial datum u0 having compact support exists globally in time and grows up to ∞ as t → ∞: limtt→∞ inf|x|<Ru(x, t) = ∞ for any R > 0. Moreover, we give a condition on f such that (i) holds, and show the existence of f such that (ii) holds.


Author(s):  
Yuan-wei Qi

In this paper we study the Cauchy problem in Rn of general parabolic equations which take the form ut = Δum + ts|x|σup with non-negative initial value. Here s ≧ 0, m > (n − 2)+/n, p > max (1, m) and σ > − 1 if n = 1 or σ > − 2 if n ≧ 2. We prove, among other things, that for p ≦ pc, where pc ≡ m + s(m − 1) + (2 + 2s + σ)/n > 1, every nontrivial solution blows up in finite time. But for p > pc a positive global solution exists.


Author(s):  
Daniele Andreucci ◽  
Anatoli F. Tedeev

AbstractWe consider the Cauchy problem for doubly nonlinear degenerate parabolic equations with inhomogeneous density on noncompact Riemannian manifolds. We give a qualitative classification of the behavior of the solutions of the problem depending on the behavior of the density function at infinity and the geometry of the manifold, which is described in terms of its isoperimetric function. We establish for the solutions properties as: stabilization of the solution to zero for large times, finite speed of propagation, universal bounds of the solution, blow up of the interface. Each one of these behaviors of course takes place in a suitable range of parameters, whose definition involves a universal geometrical characteristic function, depending both on the geometry of the manifold and on the asymptotics of the density at infinity.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Ivan Pukal’skii ◽  
Bohdan Yashan

Annotation. For a second-order parabolic equation, the multipoint in time Cauchy problem is considered. The coefficients of the equation and the boundary condition have power singularities of arbitrary order in time and space variables on a certain set of points. Conditions for the existence and uniqueness of the solution of the problem in Hölder spaces with power weight are found.


2020 ◽  
Vol 18 (1) ◽  
pp. 194-203 ◽  
Author(s):  
Zaiyun Zhang ◽  
Limei Li ◽  
Chunhua Fang ◽  
Fan He ◽  
Chuangxia Huang ◽  
...  

Abstract In this paper, we investigate the Cauchy problem for the N – abc family of Camassa-Holm type equation with both dissipation and dispersion. Furthermore, we establish the blow-up result of the positive solutions in finite time under certain conditions on the initial datum. This result complements the early one in the literature, such as [E. Novruzov, Blow-up phenomena for the weakly dissipative Dullin-Gottwald-Holm equation, J. Math. Phys. 54 (2013), no. 9, 092703, DOI 10.1063/1.4820786] and [Z.Y. Zhang, J.H. Huang, and M.B. Sun, Blow-up phenomena for the weakly dissipative Dullin-Gottwald-Holm equation revisited, J. Math. Phys. 56 (2015), no. 9, 092701, DOI 10.1063/1.4930198].


2009 ◽  
Vol 2009 ◽  
pp. 1-12
Author(s):  
Zongqi Liang ◽  
Huashui Zhan

By Oleinik's line method, we study the existence and the uniqueness of the classical solution of the Cauchy problem for the following equation in[0,T]×R2:∂xxu+u∂yu−∂tu=f(⋅,u), provided thatTis suitable small. Results of numerical experiments are reported to demonstrate that the strong solutions of the above equation may blow up in finite time.


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Pan Zheng ◽  
Chunlai Mu ◽  
Dengming Liu ◽  
Xianzhong Yao ◽  
Shouming Zhou

We investigate the blow-up properties of the positive solution of the Cauchy problem for a quasilinear degenerate parabolic equation with strongly nonlinear sourceut=div(|∇um|p−2∇ul)+uq,  (x,t)∈RN×(0,T), whereN≥1,p>2, andm,l,  q>1, and give a secondary critical exponent on the decay asymptotic behavior of an initial value at infinity for the existence and nonexistence of global solutions of the Cauchy problem. Moreover, under some suitable conditions we prove single-point blow-up for a large class of radial decreasing solutions.


2017 ◽  
Vol 63 (4) ◽  
pp. 586-598
Author(s):  
V N Denisov

In the Cauchy problem L1u≡Lu+(b,∇u)+cu-ut=0,(x,t)∈D,u(x,0)=u0(x),x∈RN, for nondivergent parabolic equation with growing lower-order term in the half-space D=RN×[0,∞), N⩾3, we prove sufficient conditions for exponential stabilization rate of solution as t→+∞ uniformly with respect to x on any compact K in RN with any bounded and continuous in RN initial function u0(x).


2020 ◽  
Vol 23 (6) ◽  
pp. 1797-1809
Author(s):  
Sergei Rogosin ◽  
Maryna Dubatovskaya

Abstract This survey paper is devoted to the description of the results by M.M. Djrbashian related to the modern theory of Fractional Calculus. M.M. Djrbashian (1918-1994) is a well-known expert in complex analysis, harmonic analysis and approximation theory. Anyway, his contributions to fractional calculus, to boundary value problems for fractional order operators, to the investigation of properties of the Queen function of Fractional Calculus (the Mittag-Leffler function), to integral transforms’ theory has to be understood on a better level. Unfortunately, most of his works are not enough popular as in that time were published in Russian. The aim of this survey is to fill in the gap in the clear recognition of M.M. Djrbashian’s results in these areas. For same purpose, we decided also to translate in English one of his basic papers [21] of 1968 (joint with A.B. Nersesian, “Fractional derivatives and the Cauchy problem for differential equations of fractional order”), and were invited by the “FCAA” editors to publish its re-edited version in this same issue of the journal.


Sign in / Sign up

Export Citation Format

Share Document