scholarly journals The Adjacency Matrix of One Type of Directed Graph and the Jacobsthal Numbers and Their Determinantal Representation

2012 ◽  
Vol 2012 ◽  
pp. 1-14
Author(s):  
Fatih Yılmaz ◽  
Durmuş Bozkurt

Recently there is huge interest in graph theory and intensive study on computing integer powers of matrices. In this paper, we consider one type of directed graph. Then we obtain a general form of the adjacency matrices of the graph. By using the well-known property which states the(i,j)entry ofAm(Ais adjacency matrix) is equal to the number of walks of lengthmfrom vertexito vertexj, we show that elements ofmth positive integer power of the adjacency matrix correspond to well-known Jacobsthal numbers. As a consequence, we give a Cassini-like formula for Jacobsthal numbers. We also give a matrix whose permanents are Jacobsthal numbers.

Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1522
Author(s):  
Anna Concas ◽  
Lothar Reichel ◽  
Giuseppe Rodriguez ◽  
Yunzi Zhang

The power method is commonly applied to compute the Perron vector of large adjacency matrices. Blondel et al. [SIAM Rev. 46, 2004] investigated its performance when the adjacency matrix has multiple eigenvalues of the same magnitude. It is well known that the Lanczos method typically requires fewer iterations than the power method to determine eigenvectors with the desired accuracy. However, the Lanczos method demands more computer storage, which may make it impractical to apply to very large problems. The present paper adapts the analysis by Blondel et al. to the Lanczos and restarted Lanczos methods. The restarted methods are found to yield fast convergence and to require less computer storage than the Lanczos method. Computed examples illustrate the theory presented. Applications of the Arnoldi method are also discussed.


10.37236/429 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Peter Dankelmann ◽  
L. Volkmann

Soares [J. Graph Theory 1992] showed that the well known upper bound $\frac{3}{\delta+1}n+O(1)$ on the diameter of undirected graphs of order $n$ and minimum degree $\delta$ also holds for digraphs, provided they are eulerian. In this paper we investigate if similar bounds can be given for digraphs that are, in some sense, close to being eulerian. In particular we show that a directed graph of order $n$ and minimum degree $\delta$ whose arc set can be partitioned into $s$ trails, where $s\leq \delta-2$, has diameter at most $3 ( \delta+1 - \frac{s}{3})^{-1}n+O(1)$. If $s$ also divides $\delta-2$, then we show the diameter to be at most $3(\delta+1 - \frac{(\delta-2)s}{3(\delta-2)+s} )^{-1}n+O(1)$. The latter bound is sharp, apart from an additive constant. As a corollary we obtain the sharp upper bound $3( \delta+1 - \frac{\delta-2}{3\delta-5})^{-1} n + O(1)$ on the diameter of digraphs that have an eulerian trail.


2020 ◽  
Vol 30 (14) ◽  
pp. 2050212
Author(s):  
Ian Stewart

Balanced colorings of networks correspond to flow-invariant synchrony spaces. It is known that the coarsest balanced coloring is equivalent to nodes having isomorphic infinite input trees, but this condition is not algorithmic. We provide an algorithmic characterization: two nodes have the same color for the coarsest balanced coloring if and only if their [Formula: see text]th input trees are isomorphic, where [Formula: see text] is the number of nodes. Here [Formula: see text] is the best possible. The proof is analogous to that of Leighton’s theorem in graph theory, using the universal cover of the network and the notion of a symbolic adjacency matrix to set up a partition refinement algorithm whose output is the coarsest balanced coloring. The running time of the algorithm is cubic in [Formula: see text].


Author(s):  
C. E. M. Pearce ◽  
M. S. Keane

AbstractSchmidt has shown that if r and s are positive integers and there is no positive integer power of r which is also a positive integer power of s, then there exists an uncountable set of reals which are normal to base r but not even simply normal to base s. We give a structurally simple proof of this result


Author(s):  
Jyoti Shetty ◽  
G. Sudhakara

A semigraph, defined as a generalization of graph by  Sampathkumar, allows an edge to have more than two vertices. The idea of multiple vertices on edges gives rise to multiplicity in every concept in the theory of graphs when generalized to semigraphs. In this paper, we define a representing matrix of a semigraph [Formula: see text] and call it binomial incidence matrix of the semigraph [Formula: see text]. This matrix, which becomes the well-known incidence matrix when the semigraph is a graph, represents the semigraph uniquely, up to isomorphism. We characterize this matrix and derive some results on the rank of the matrix. We also show that a matrix derived from the binomial incidence matrix satisfies a result in graph theory which relates incidence matrix of a graph and adjacency matrix of its line graph. We extend the concept of “twin vertices” in the theory of graphs to semigraph theory, and characterize them. Finally, we derive a systematic approach to show that the binomial incidence matrix of any semigraph on [Formula: see text] vertices can be obtained from the incidence matrix of the complete graph [Formula: see text].


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yajing Wang ◽  
Yubin Gao

Spectral graph theory plays an important role in engineering. Let G be a simple graph of order n with vertex set V=v1,v2,…,vn. For vi∈V, the degree of the vertex vi, denoted by di, is the number of the vertices adjacent to vi. The arithmetic-geometric adjacency matrix AagG of G is defined as the n×n matrix whose i,j entry is equal to di+dj/2didj if the vertices vi and vj are adjacent and 0 otherwise. The arithmetic-geometric spectral radius and arithmetic-geometric energy of G are the spectral radius and energy of its arithmetic-geometric adjacency matrix, respectively. In this paper, some new upper bounds on arithmetic-geometric energy are obtained. In addition, we present the Nordhaus–Gaddum-type relations for arithmetic-geometric spectral radius and arithmetic-geometric energy and characterize corresponding extremal graphs.


2015 ◽  
Vol 770 ◽  
pp. 585-591
Author(s):  
Alexey Barinov ◽  
Aleksey Zakharov

This paper describes an algorithm for computing the position and orientation of 3-D objects by comparing graphs. The graphs are based on feature points of the image. Comparison is performed by a spectral decomposition with obtaining eigenvectors of weighted adjacency matrix of the graph.


2008 ◽  
Vol 130 (5) ◽  
Author(s):  
Y. V. D. Rao ◽  
A. C. Rao

New planetary gear trains (PGTs) are generated using graph theory. A geared kinematic chain is converted to a graph and a graph in turn is algebraically represented by a vertex-vertex adjacency matrix. Checking for isomorphism needs to be an integral part of the enumeration process of PGTs. Hamming matrix is written from the adjacency matrix, using a set of rules, which is adequate to detect isomorphism in PGTs. The present work presents the twin objectives of testing for isomorphism and compactness using the Hamming matrices and moment matrices.


2013 ◽  
Vol 319 ◽  
pp. 351-355 ◽  
Author(s):  
Tian Zhong Sui ◽  
Zhen Tan ◽  
Lei Wang ◽  
Xiao Bin Gu ◽  
Zhao Hui Ren

Dimensioning work is a considerably important link in the whole Engineering Drawing. For existing completeness testing of dimensioning, correct conclusion can not be drawn in case of multi-closed dimension. This paper mainly discusses the ways how to automatically check up the deficiency and redundancy of the dimensions. This paper presents a new and effective algorithm to test whether the dimensions are redundant or insufficient by means of the graph theory and intelligent search. The dimensions are transformed to non-directed graph, then detects whether they are redundant or insufficient by traversing adjacent matrix of the non-directed graph. The deficiency and redundancy of dimension for multi-views of engineering drawing can be corrected by this algorithm.


Sign in / Sign up

Export Citation Format

Share Document