scholarly journals Stem Cells in Large Animal Models of Retinal and Neurological Disease

2012 ◽  
Vol 2012 ◽  
pp. 1-2 ◽  
Author(s):  
Henry Klassen ◽  
Budd A. Tucker ◽  
Chee G. Liew ◽  
Morten La Cour ◽  
Heuy-Ching Wang
2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
B. Yahaya

Understanding the mechanisms underlying the process of regeneration and repair of airway epithelial structures demands close characterization of the associated cellular and molecular events. The choice of an animal model system to study these processes and the role of lung stem cells is debatable since ideally the chosen animal model should offer a valid comparison with the human lung. Species differences may include the complex three-dimensional lung structures, cellular composition of the lung airway as well as transcriptional control of the molecular events in response to airway epithelium regeneration, and repair following injury. In this paper, we discuss issues related to the study of the lung repair and regeneration including the role of putative stem cells in small- and large-animal models. At the end of this paper, the author discuss the potential for using sheep as a model which can help bridge the gap between small-animal model systems and humans.


2009 ◽  
Vol 338 (3) ◽  
pp. 401-411 ◽  
Author(s):  
Elena Arrigoni ◽  
Silvia Lopa ◽  
Laura de Girolamo ◽  
Deborah Stanco ◽  
Anna T. Brini

Author(s):  
Joanna Bukowska ◽  
Anna Zuzanna Szóstek-Mioduchowska ◽  
Marta Kopcewicz ◽  
Katarzyna Walendzik ◽  
Sylwia Machcińska ◽  
...  

Abstract Adipose-derived stem cells (ASCs) isolated from domestic animals fulfill the qualitative criteria of mesenchymal stem cells, including the capacity to differentiate along multiple lineage pathways and to self-renew, as well as immunomodulatory capacities. Recent findings on human diseases derived from studying large animal models, have provided evidence that administration of autologous or allogenic ASCs can improve the process of healing. In a narrow group of large animals used in bioresearch studies, pigs and horses have been shown to be the best suited models for study of the wound healing process, cardiovascular and musculoskeletal disorders. To this end, current literature demonstrates that ASC-based therapies bring considerable benefits to animal health in both spontaneously occurring and experimentally induced clinical cases. The purpose of this review is to provide an overview of the diversity, isolation, and characterization of ASCs from livestock. Particular attention has been paid to the functional characteristics of the cells that facilitate their therapeutic application in large animal models of human disease. In this regard, we describe outcomes of ASCs utilization in translational research with pig and horse models of disease. Furthermore, we evaluate the current status of ASC-based therapy in veterinary practice, particularly in the rapidly developing field of equine regenerative medicine. In conclusion, this review presents arguments that support the relevance of animal ASCs in the field of regenerative medicine and it provides insights into the future perspectives of ASC utilization in animal husbandry. Graphical abstract


2021 ◽  
Vol 22 (11) ◽  
pp. 6092
Author(s):  
Bastian Amend ◽  
Niklas Harland ◽  
Jasmin Knoll ◽  
Arnulf Stenzl ◽  
Wilhelm K. Aicher

Stress urinary incontinence (SUI) is a significant health concern for patients affected, impacting their quality of life severely. To investigate mechanisms contributing to SUI different animal models were developed. Incontinence was induced under defined conditions to explore the pathomechanisms involved, spontaneous recovery, or efficacy of therapies over time. The animal models were coined to mimic known SUI risk factors such as childbirth or surgical injury. However, animal models neither reflect the human situation completely nor the multiple mechanisms that ultimately contribute to the pathogenesis of SUI. In the past, most SUI animal studies took advantage of rodents or rabbits. Recent models present for instance transgenic rats developing severe obesity, to investigate metabolic interrelations between the disorder and incontinence. Using recombinant gene technologies, such as transgenic, gene knock-out or CRISPR-Cas animals may narrow the gap between the model and the clinical situation of patients. However, to investigate surgical regimens or cell therapies to improve or even cure SUI, large animal models such as pig, goat, dog and others provide several advantages. Among them, standard surgical instruments can be employed for minimally invasive transurethral diagnoses and therapies. We, therefore, focus in this review on large animal models of SUI.


2017 ◽  
Vol 28 (1) ◽  
pp. 31-43 ◽  
Author(s):  
Lan Huang ◽  
Fengyan Zhao ◽  
Yi Qu ◽  
Li Zhang ◽  
Yan Wang ◽  
...  

AbstractHypoxic-ischemic encephalopathy (HIE), a serious disease leading to neonatal death, is becoming a key area of pediatric neurological research. Despite remarkable advances in the understanding of HIE, the explicit pathogenesis of HIE is unclear, and well-established treatments are absent. Animal models are usually considered as the first step in the exploration of the underlying disease and in evaluating promising therapeutic interventions. Various animal models of HIE have been developed with distinct characteristics, and it is important to choose an appropriate animal model according to the experimental objectives. Generally, small animal models may be more suitable for exploring the mechanisms of HIE, whereas large animal models are better for translational studies. This review focuses on the features of commonly used HIE animal models with respect to their modeling strategies, merits, and shortcomings, and associated neuropathological changes, providing a comprehensive reference for improving existing animal models and developing new animal models.


Author(s):  
Peter W. Walsh ◽  
Craig S. McLachlan ◽  
Leigh Ladd ◽  
Arie Blitz ◽  
R. Mark Gillies ◽  
...  

Numerous large animal models of chronic cardiac ischemia have been developed to explore either pathological mechanisms and or device interventions in developed heart failure models. Traditionally chronic heart failure in large animal models such as sheep or pigs has been induced by either coronary ligation with or without reperfusion. Coronary ligation is often attempted in the open chest surgical model or more recently in the closed chest animal via angiography [1]. Both techniques can be challenging and also induce high mortality with the risk of myocardial stunning and resultant shock and or lethal arrhythmias. There is also difficulty in developing stable heart failure across cases where infarct sizes can be variable. One strategy to over come this variability has been via rapid ventricular pacing, however inducing heart failure does not induce sustained heart failure in many cases if the pacing is switched off, and additionally pacing does not induce some of the underlying pathology seen in the development of heart failure [1].


Sign in / Sign up

Export Citation Format

Share Document