scholarly journals Cardiac regeneration using pluripotent stem cells—Progression to large animal models

2014 ◽  
Vol 13 (3) ◽  
pp. 654-665 ◽  
Author(s):  
James J.H. Chong ◽  
Charles E. Murry
2012 ◽  
Vol 2012 ◽  
pp. 1-2 ◽  
Author(s):  
Henry Klassen ◽  
Budd A. Tucker ◽  
Chee G. Liew ◽  
Morten La Cour ◽  
Heuy-Ching Wang

Biomolecules ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1392
Author(s):  
Andreas Spannbauer ◽  
Julia Mester-Tonczar ◽  
Denise Traxler ◽  
Nina Kastner ◽  
Katrin Zlabinger ◽  
...  

The adult mammalian heart lacks the ability to sufficiently regenerate itself, leading to the progressive deterioration of function and heart failure after ischemic injuries such as myocardial infarction. Thus far, cell-based therapies have delivered unsatisfactory results, prompting the search for cell-free alternatives that can induce the heart to repair itself through cardiomyocyte proliferation, angiogenesis, and advantageous remodeling. Large animal models are an invaluable step toward translating basic research into clinical applications. In this review, we give an overview of the state-of-the-art in cell-free cardiac regeneration therapies that have been tested in large animal models, mainly pigs. Cell-free cardiac regeneration therapies involve stem cell secretome- and extracellular vesicles (including exosomes)-induced cardiac repair, RNA-based therapies, mainly regarding microRNAs, but also modified mRNA (modRNA) as well as other molecules including growth factors and extracellular matrix components. Various methods for the delivery of regenerative substances are used, including adenoviral vectors (AAVs), microencapsulation, and microparticles. Physical stimulation methods and direct cardiac reprogramming approaches are also discussed.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
B. Yahaya

Understanding the mechanisms underlying the process of regeneration and repair of airway epithelial structures demands close characterization of the associated cellular and molecular events. The choice of an animal model system to study these processes and the role of lung stem cells is debatable since ideally the chosen animal model should offer a valid comparison with the human lung. Species differences may include the complex three-dimensional lung structures, cellular composition of the lung airway as well as transcriptional control of the molecular events in response to airway epithelium regeneration, and repair following injury. In this paper, we discuss issues related to the study of the lung repair and regeneration including the role of putative stem cells in small- and large-animal models. At the end of this paper, the author discuss the potential for using sheep as a model which can help bridge the gap between small-animal model systems and humans.


2009 ◽  
Vol 338 (3) ◽  
pp. 401-411 ◽  
Author(s):  
Elena Arrigoni ◽  
Silvia Lopa ◽  
Laura de Girolamo ◽  
Deborah Stanco ◽  
Anna T. Brini

2021 ◽  
Vol 8 ◽  
Author(s):  
Yusuke Soma ◽  
Yuika Morita ◽  
Yoshikazu Kishino ◽  
Hideaki Kanazawa ◽  
Keiichi Fukuda ◽  
...  

The number of patients with heart failure (HF) is increasing with aging in our society worldwide. Patients with HF who are resistant to medication and device therapy are candidates for heart transplantation (HT). However, the shortage of donor hearts is a serious issue. As an alternative to HT, cardiac regenerative therapy using human pluripotent stem cells (hPSCs), such as human embryonic stem cells and induced pluripotent stem cells, is expected to be realized. Differentiation of hPSCs into cardiomyocytes (CMs) is facilitated by mimicking normal heart development. To prevent tumorigenesis after transplantation, it is important to eliminate non-CMs, including residual hPSCs, and select only CMs. Among many CM selection systems, metabolic selection based on the differences in metabolism between CMs and non-CMs is favorable in terms of cost and efficacy. Large-scale culture systems have been developed because a large number of hPSC-derived CMs (hPSC-CMs) are required for transplantation in clinical settings. In large animal models, hPSC-CMs transplanted into the myocardium improved cardiac function in a myocardial infarction model. Although post-transplantation arrhythmia and immune rejection remain problems, their mechanisms and solutions are under investigation. In this manner, the problems of cardiac regenerative therapy are being solved individually. Thus, cardiac regenerative therapy with hPSC-CMs is expected to become a safe and effective treatment for HF in the near future. In this review, we describe previous studies related to hPSC-CMs and discuss the future perspectives of cardiac regenerative therapy using hPSC-CMs.


2021 ◽  
Author(s):  
Warunya Chakritbudsabong ◽  
Ruttachuk Rungsiwiwut ◽  
Ladawan Sariya ◽  
Phakhin Juntahirun ◽  
Nattarun Chaisilp ◽  
...  

Abstract Background The reprogramming of cells to induced neural stem cells (iNSCs), faster and safer to generate than induced pluripotent stem cells, holds tremendous promise for disease modeling and personalized cell-based therapies for neurological diseases. Porcine iNSCs (piNSCs) may serve as a disease model for human medicine, as pigs are one of the most successful large animal models in biomedical research. Thus, this study aimed to establish safe and efficient integration-free piNSC lines.Methods The integration-free piNSC lines were generated by reprogramming porcine fibroblasts using the Sendai virus (SeV).Results Here we report the successful generation of integration-free piNSC lines using the SeV, with a reprogramming efficiency of 0.4%. The piNSCs can be expanded for up to 40 passages and express high levels of NSC markers (PAX6, NESTIN, and SOX2). They can produce neurons and glia, expressing TUJ, MAP2, TH, and GFAP. No induced pluripotent stem cells developed during reprogramming, and the established piNSCs did not express OCT4. Hence, the SeV can reprogram porcine fibroblast without first going through an intermediate pluripotent stage.Conclusions With the SeV approach, we generated integration-free piNSCs that may be used to assess the efficacy and safety of iNSC-based clinical translation in humans.


Author(s):  
Yu Gao ◽  
Jun Pu

Human pluripotent stem cells (hPSCs) are derived from human embryos (human embryonic stem cells) or reprogrammed from human somatic cells (human induced pluripotent stem cells). They can differentiate into cardiovascular cells, which have great potential as exogenous cell resources for restoring cardiac structure and function in patients with heart disease or heart failure. A variety of protocols have been developed to generate and expand cardiovascular cells derived from hPSCs in vitro. Precisely and spatiotemporally activating or inhibiting various pathways in hPSCs is required to obtain cardiovascular lineages with high differentiation efficiency. In this concise review, we summarize the protocols of differentiating hPSCs into cardiovascular cells, highlight their therapeutic application for treatment of cardiac diseases in large animal models, and discuss the challenges and limitations in the use of cardiac cells generated from hPSCs for a better clinical application of hPSC-based cardiac cell therapy.


Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1282 ◽  
Author(s):  
Emmanuel N. Olivier ◽  
Kai Wang ◽  
Joshua Grossman ◽  
Nadim Mahmud ◽  
Eric E. Bouhassira

As cell culture methods and stem cell biology have progressed, the in vitro production of cultured RBCs (cRBCs) has emerged as a viable option to produce cells for transfusion or to carry therapeutic cargoes. RBCs produced in culture can be quality-tested either by xeno-transfusion of human cells into immuno-deficient animals, or by transfusion of autologous cells in immuno-competent models. Although murine xeno-transfusion methods have improved, they must be complemented by studies in immuno-competent models. Non-human primates (NHPs) are important pre-clinical, large animal models due to their high biological and developmental similarities with humans, including their comparable hematopoietic and immune systems. Among NHPs, baboons are particularly attractive to validate cRBCs because of the wealth of data available on the characteristics of RBCs in this species that have been generated by past blood transfusion studies. We report here that we have developed a method to produce enucleated cRBCs by differentiation of baboon induced pluripotent stem cells (iPSCs). This method will enable the use of baboons to evaluate therapeutic cRBCs and generate essential pre-clinical data in an immuno-competent, large animal model. Production of the enucleated baboon cRBCs was achieved by adapting the PSC-RED protocol that we previously developed for human cells. Baboon-PSC-RED is an efficient chemically-defined method to differentiate iPSCs into cRBCs that are about 40% to 50% enucleated. PSC-RED is relatively low cost because it requires no albumin and only small amounts of recombinant transferrin.


Author(s):  
Joanna Bukowska ◽  
Anna Zuzanna Szóstek-Mioduchowska ◽  
Marta Kopcewicz ◽  
Katarzyna Walendzik ◽  
Sylwia Machcińska ◽  
...  

Abstract Adipose-derived stem cells (ASCs) isolated from domestic animals fulfill the qualitative criteria of mesenchymal stem cells, including the capacity to differentiate along multiple lineage pathways and to self-renew, as well as immunomodulatory capacities. Recent findings on human diseases derived from studying large animal models, have provided evidence that administration of autologous or allogenic ASCs can improve the process of healing. In a narrow group of large animals used in bioresearch studies, pigs and horses have been shown to be the best suited models for study of the wound healing process, cardiovascular and musculoskeletal disorders. To this end, current literature demonstrates that ASC-based therapies bring considerable benefits to animal health in both spontaneously occurring and experimentally induced clinical cases. The purpose of this review is to provide an overview of the diversity, isolation, and characterization of ASCs from livestock. Particular attention has been paid to the functional characteristics of the cells that facilitate their therapeutic application in large animal models of human disease. In this regard, we describe outcomes of ASCs utilization in translational research with pig and horse models of disease. Furthermore, we evaluate the current status of ASC-based therapy in veterinary practice, particularly in the rapidly developing field of equine regenerative medicine. In conclusion, this review presents arguments that support the relevance of animal ASCs in the field of regenerative medicine and it provides insights into the future perspectives of ASC utilization in animal husbandry. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document