scholarly journals Growth and Physiological Responses ofPhaseolusSpecies to Salinity Stress

2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
J. S. Bayuelo-Jiménez ◽  
N. Jasso-Plata ◽  
I. Ochoa

This paper reports the changes on growth, photosynthesis, water relations, soluble carbohydrate, and ion accumulation, for two salt-tolerant and two salt-sensitivePhaseolusspecies grown under increasing salinity (0, 60 and 90 mM NaCl). After 20 days exposure to salt, biomass was reduced in all species to a similar extent (about 56%), with the effect of salinity on relative growth rate (RGR) confined largely to the first week. RGR of salt-tolerant species was reduced by salinity due to leaf area ratio (LAR) reduction rather than a decline in photosynthetic capacity, whereas unit leaf rate and LAR were the key factors in determining RGR on salt-sensitive species. Photosynthetic rate and stomatal conductance decreased gradually with salinity, showing significant reductions only in salt-sensitive species at the highest salt level. There was little difference between species in the effect of salinity on water relations, as indicated by their positive turgor. Osmotic adjustment occurred in all species and depended on higher K+, Na+, and Cl−accumulation. Despite some changes in soluble carbohydrate accumulation induced by salt stress, no consistent contributions in osmotic adjustment could be found in this study. Therefore, we suggest that tolerance to salt stress is largely unrelated to carbohydrate accumulation inPhaseolusspecies.

Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 569
Author(s):  
Annick Bertrand ◽  
Craig Gatzke ◽  
Marie Bipfubusa ◽  
Vicky Lévesque ◽  
Francois P. Chalifour ◽  
...  

Alfalfa and its rhizobial symbiont are sensitive to salinity. We compared the physiological responses of alfalfa populations inoculated with a salt-tolerant rhizobium strain, exposed to five NaCl concentrations (0, 20, 40, 80, or 160 mM NaCl). Two initial cultivars, Halo (H-TS0) and Bridgeview (B-TS0), and two populations obtained after three cycles of recurrent selection for salt tolerance (H-TS3 and B-TS3) were compared. Biomass, relative water content, carbohydrates, and amino acids concentrations in leaves and nodules were measured. The higher yield of TS3-populations than initial cultivars under salt stress showed the effectiveness of our selection method to improve salinity tolerance. Higher relative root water content in TS3 populations suggests that root osmotic adjustment is one of the mechanisms of salt tolerance. Higher concentrations of sucrose, pinitol, and amino acid in leaves and nodules under salt stress contributed to the osmotic adjustment in alfalfa. Cultivars differed in their response to recurrent selection: under a 160 mM NaCl-stress, aromatic amino acids and branched-chain amino acids (BCAAs) increased in nodules of B-ST3 as compared with B-TS0, while these accumulations were not observed in H-TS3. BCAAs are known to control bacteroid development and their accumulation under severe stress could have contributed to the high nodulation of B-TS3.


2017 ◽  
Vol 109 (2) ◽  
pp. 291 ◽  
Author(s):  
Zahra Mirfattahi ◽  
Soheil Karimi ◽  
Mahmoud Reza Roozban

Selecting salt tolerant rootstocks is a sustainable approach for developing fruit trees in salinity prone areas. 60-day-old seedlings of <em>Pistacia vera </em>‘Akbari’ and ‘Ghazvini’, and <em>P. vera</em> ‘Ghazvini’ × <em>P. atlantica </em>(G×A) were subjected to 0, 50, 100 and 150 mM NaCl in half strength Hoagland’s nutrient solution. After 45 days, the growth, water relations, and oxidative damage parameters were investigated. Salt stress reduced plant biomass, height, crown diameter and leaf number, but increased specific leaf area (SLA) of the seedlings. Under salt stress, the growth of ‘Akbari’ seedlings was higher than the other genotypes. Accumulation of malondialdehyde (MDA) and proline was observed in the leaves of salt affected seedlings. ‘Ghazvini’ seedlings had the highest MDA concentration and the lowest cell membrane stability in their leaves. Degredation of photosynthetic pigments under salt stress was lower in the leaves of ‘Akbari’ seedlings than that in other genotypes. Increase in leaf succulence was observed in ‘Akbari’ and G×A seedlings in response to salt stress. Relative water content and concentration of anthocyanins in the leaves of pistachio genotypes remained unchanged under salt stress. The results revealed that monitoring leaf abscission, SLA, leaf succulence, MDA concentration, and photosynthetic pigments provide suitable contrast for screening salt tolerance in pistachio. Furthuremore, ‘Akbari’ was found to be the most salt tolerant genotype.


2003 ◽  
Vol 15 (2) ◽  
pp. 113-118 ◽  
Author(s):  
Claudivan Feitosa de Lacerda ◽  
José Cambraia ◽  
Marco Antonio Oliva ◽  
Hugo Alberto Ruiz

Seedlings of two sorghum genotypes [Sorghum bicolor (L.) Moench], one salt tolerant (CSF 20) and the other salt sensitive (CSF 18) were grown in nutrient solution containing 0, 50 and 100 mmol.L-1 NaCl for seven days and the osmotic potential (Ys) and the contribution of organic and inorganic solutes to the Ys were determined in the leaves and roots. Salinity reduced the Ys of the cellular sap of leaves and roots in both genotypes, mainly in the salt sensitive one. The higher decrease in the Ys in the salt sensitive genotype was mostly due to higher accumulation of Na+ and Cl- that probably exceeded the amount needed for the osmotic adjustment. Among the inorganic solutes, K+ contributed the most to the Ys in control unstressed seedlings, but its contribution decreased as salt stress increased, especially in the salt sensitive genotype. Soluble carbohydrates and amino acids were the organic solutes that contributed the most to the leaf and root Ys, respectively. No statistically significant difference in these organic solute contributions to the leaf Ys between genotypes was observed. Their contributions to the root Ys, however, were higher in the salt tolerant genotype, especially at higher NaCl concentration. Proline contribution to leaf and root Ys was quite small in both genotypes and its accumulation was not related to salt tolerance. Our results suggest that the salt tolerant genotype was able to maintain a more adequate osmotic pool in the leaves and roots under salt stress than the salt sensitive genotype.


HortScience ◽  
1997 ◽  
Vol 32 (2) ◽  
pp. 296-300 ◽  
Author(s):  
M.R. Foolad ◽  
G.Y. Lin

Seed of 42 wild accessions (Plant Introductions) of Lycopersicon pimpinellifolium Jusl., 11 cultigens (cultivated accessions) of L. esculentum Mill., and three control genotypes [LA716 (a salt-tolerant wild accession of L. pennellii Corr.), PI 174263 (a salt-tolerant cultigen), and UCT5 (a salt-sensitive breeding line)] were evaluated for germination in either 0 mm (control) or 100 mm synthetic sea salt (SSS, Na+/Ca2+ molar ratio equal to 5). Germination time increased in response to salt-stress in all genotypes, however, genotypic variation was observed. One accession of L. pimpinellifolium, LA1578, germinated as rapidly as LA716, and both germinated more rapidly than any other genotype under salt-stress. Ten accessions of L. pimpinellifolium germinated more rapidly than PI 174263 and 35 accessions germinated more rapidly than UCT5 under salt-stress. The results indicate a strong genetic potential for salt tolerance during germination within L. pimpinellifolium. Across genotypes, germination under salt-stress was positively correlated (r = 0.62, P < 0.01) with germination in the control treatment. The stability of germination response at diverse salt-stress levels was determined by evaluating germination of a subset of wild, cultivated accessions and the three control genotypes at 75, 150, and 200 mm SSS. Seeds that germinated rapidly at 75 mm also germinated rapidly at 150 mm salt. A strong correlation (r = 0.90, P < 0.01) existed between the speed of germination at these two salt-stress levels. At 200 mm salt, most accessions (76%) did not reach 50% germination by 38 days, demonstrating limited genetic potential within Lycopersicon for salt tolerance during germination at this high salinity.


Sign in / Sign up

Export Citation Format

Share Document