scholarly journals Simple Model-Free Controller for the Stabilization of Planetary Inverted Pendulum

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Huanhuan Mai ◽  
Ying-Jeh Huang ◽  
Xiaofeng Liao ◽  
Ping-Chou Wu

A simple model-free controller is presented for solving the nonlinear dynamic control problems. As an example of the problem, a planetary gear-type inverted pendulum (PIP) is discussed. To control the inherently unstable system which requires real-time control responses, the design of a smart and simple controller is made necessary. The model-free controller proposed includes a swing-up controller part and a stabilization controller part; neither controller has any information about the PIP. Since the input/output scaling parameters of the fuzzy controller are highly sensitive, we use genetic algorithm (GA) to obtain the optimal control parameters. The experimental results show the effectiveness and robustness of the present controller.

2010 ◽  
Vol 439-440 ◽  
pp. 1190-1196 ◽  
Author(s):  
Bao Jiang Zhao

Fuzzy logical controller is one of the most important applications of fuzzy-rule-based system that models the human decision processing with a collection of fuzzy rules. In this paper, an adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of selection of the paths and the strategy of the trail information updating. The algorithm is used to design a fuzzy logical controller automatically for real-time control of an inverted pendulum. In order to avoid the combinatorial explosion of fuzzy rules due to multivariable inputs, state variable synthesis scheme is employed to reduce the number of fuzzy rules greatly. Experimental results show that the designed controller can control actual inverted pendulum successfully.


2014 ◽  
Vol 7 (3) ◽  
pp. 25-44
Author(s):  
Nazhat S. Abdul-Razak ◽  
Omar A. Mohamad ◽  
Dina H. Shaker

In this research a fuzzy neural network is proposed so, fuzzy mechanism and adaptive neuro fuzzy mechanism are designed and simulated to control the (flow rate) control action on cell multiplexing in (ATM). The cell flow rate on the output of neural- fuzzy controller. Has been simulated depending on the input variables, one of these inputs is the queuing message (message length), the second one is the number of inputs, and third is the type of massage. These input variables are used to build the fuzzy rules uses (FNN) as its condition and the control action as its consequence, combines these rules to represent the model or system. NN is used as a training algorithm to learn the weights of fuzzy system. The simulation process has been executed by using (MATLAB). In the light of this research, it is apparent that NNS and fuzzy logic based systems can play an important role in the control of cell multiplexing in (ATM) network, since they can provide adaptive model free, real time control to the user.


2014 ◽  
Vol 686 ◽  
pp. 126-131
Author(s):  
Xiao Yan Sha

Taking embedded processor as the core control unit, the paper designs the fan monitoring system software and hardware to achieve the fan working condition detection and real-time control. For the control algorithm, the paper analyzes the fuzzy control system theory and composition, and then combined with tunnel ventilation particularity, introduce feed-forward model to predict the incremental acquisition of pollutants to reduce lag, combined with the system feedback value and the set value, by calculate of two independent computing fuzzy controller, and ultimately determine the number of units increase or decrease in the tunnel jet fans start and stop. Through simulation analysis, the introduction of a feed-forward signal, it can more effectively improve the capability of the system impact of interference.


2012 ◽  
Vol 594-597 ◽  
pp. 738-741 ◽  
Author(s):  
Yin Duan ◽  
Xing Hong Liu ◽  
Xiao Lin Chang

Main factors of the temperature control and crack prevention in arch dams are summarized. The Space-time Dynamic Control method in pipe cooling process and the Temperature Real-time Control and Decision Database System are introduced to help for temperature real-time control and rapid analysis. Successful application of these new techniques in the construction of Dagangshan arch dam indicates that the proposed method are of significant effectiveness on the temperature control and crack prevention, and have good application prospect in practical project.


2019 ◽  
Vol 292 ◽  
pp. 03014
Author(s):  
Jan Mrazek ◽  
Lucia Duricova Mrazkova ◽  
Martin Hromada ◽  
Jana Reznickova

The article is focused on the issue of interval on a light signaling device. Light signaling devices operate on different systems by means of which they are controlled. The control problem is a very static setting that does not respond to real-time traffic. Important variables for dynamic real-time control are traffic density in a selected area along with average speed. These variables are interdependent and can be based on dynamic traffic control. Dynamic traffic control ensures smoother traffic through major turns. At the same time, the number of harmful CO2 emitted from the means of transport should be reduced to the air. When used in low operation, power consumption should be reduced.


Author(s):  
Tayfun Abut ◽  
Servet Soyguder

PurposeThis paper aims to keep the pendulum on the linear moving car vertically balanced and to bring the car to the equilibrium position with the designed controllers.Design/methodology/approachAs inverted pendulum systems are structurally unstable and nonlinear dynamic systems, they are important mechanisms used in engineering and technological developments to apply control techniques on these systems and to develop control algorithms, thus ensuring that the controllers designed for real-time balancing of these systems have certain performance criteria and the selection of each controller method according to performance criteria in the presence of destructive effects is very helpful in getting information about applying the methods to other systems.FindingsAs a result, the designed controllers are implemented on a real-time and real system, and the performance results of the system are obtained graphically, compared and analyzed.Originality/valueIn this study, motion equations of a linear inverted pendulum system are obtained, and classical and artificial intelligence adaptive control algorithms are designed and implemented for real-time control. Classic proportional-integral-derivative (PID) controller, fuzzy logic controller and PID-type Fuzzy adaptive controller methods are used to control the system. Self-tuning PID-type fuzzy adaptive controller was used first in the literature search and success results have been obtained. In this regard, the authors have the idea that this work is an innovative aspect of real-time with self-tuning PID-type fuzzy adaptive controller.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2872 ◽  
Author(s):  
Mokhles M. Abdulghani ◽  
Kasim M. Al-Aubidy ◽  
Mohammed M. Ali ◽  
Qadri J. Hamarsheh

Autonomous wheelchairs are important tools to enhance the mobility of people with disabilities. Advances in computer and wireless communication technologies have contributed to the provision of smart wheelchairs to suit the needs of the disabled person. This research paper presents the design and implementation of a voice controlled electric wheelchair. This design is based on voice recognition algorithms to classify the required commands to drive the wheelchair. An adaptive neuro-fuzzy controller has been used to generate the required real-time control signals for actuating motors of the wheelchair. This controller depends on real data received from obstacle avoidance sensors and a voice recognition classifier. The wheelchair is considered as a node in a wireless sensor network in order to track the position of the wheelchair and for supervisory control. The simulated and running experiments demonstrate that, by combining the concepts of soft-computing and mechatronics, the implemented wheelchair has become more sophisticated and gives people more mobility.


2013 ◽  
Vol 850-851 ◽  
pp. 553-556
Author(s):  
Qun Yong Ou

An inverted pendulum is a classic control problem and is widely used as a benchmark for testing various control algorithms. First, this paper analyse the dynamic and non-linear model of the inverted pendulum, then focus on the real-time control of the inverted pendulum, we developed real-time control software for the single-stage inverted pendulum by using Visual C++ 2010, its mainly operate API functions to control board and implement various control algorithms.


Sign in / Sign up

Export Citation Format

Share Document