scholarly journals The Dynamic Control of the Light Signalling Device in Real-Time

2019 ◽  
Vol 292 ◽  
pp. 03014
Author(s):  
Jan Mrazek ◽  
Lucia Duricova Mrazkova ◽  
Martin Hromada ◽  
Jana Reznickova

The article is focused on the issue of interval on a light signaling device. Light signaling devices operate on different systems by means of which they are controlled. The control problem is a very static setting that does not respond to real-time traffic. Important variables for dynamic real-time control are traffic density in a selected area along with average speed. These variables are interdependent and can be based on dynamic traffic control. Dynamic traffic control ensures smoother traffic through major turns. At the same time, the number of harmful CO2 emitted from the means of transport should be reduced to the air. When used in low operation, power consumption should be reduced.

2003 ◽  
Vol 30 (6) ◽  
pp. 1034-1041 ◽  
Author(s):  
Chris Lee ◽  
Bruce Hellinga ◽  
Frank Saccomanno

This paper makes use of a probabilistic model that predicts the likelihood of crashes (crash potential) on freeways on the basis of traffic flow conditions, in real-time crash prevention. The model was developed using incident logs and loop detector data collected over a 13-month period on the Gardiner Expressway in Toronto. Previous work suggested that an increase in levels of traffic turbulence generally yields high crash potential. Traffic turbulence was defined in terms of a series of crash precursors that represent traffic conditions that were present prior to crash occurrence. To apply the model in crash prevention, the link needs to be established between crash potential and real-time safety intervention. The objective of this paper is to explore this link for different thresholds of crash potential. The paper discusses the guidelines for evaluating the safety benefit of one crash prevention strategy (variable speed limits) and suggests the risk-based evaluation framework for real-time traffic control.Key words: crash, accident, freeway, safety, traffic flow, real-time control.


2012 ◽  
Vol 594-597 ◽  
pp. 738-741 ◽  
Author(s):  
Yin Duan ◽  
Xing Hong Liu ◽  
Xiao Lin Chang

Main factors of the temperature control and crack prevention in arch dams are summarized. The Space-time Dynamic Control method in pipe cooling process and the Temperature Real-time Control and Decision Database System are introduced to help for temperature real-time control and rapid analysis. Successful application of these new techniques in the construction of Dagangshan arch dam indicates that the proposed method are of significant effectiveness on the temperature control and crack prevention, and have good application prospect in practical project.


Author(s):  
Y Y Cha ◽  
D G Gweon

In this study a two-motion-modes mobile robot is developed. The motion of the mobile robot is controlled by three d.c. servo-motors, two of which drive two wheels independently and one of which steers the wheels simultaneously. The two motion modes of the mobile robot, different velocity motion (DVM) and equal velocity motion (EVM), are analysed. Kinematic and dynamic analyses of the two motion modes are performed. For the implementation of real-time control considering mobile robot dynamics, the forward and inverse dynamic solutions are derived explicitly. Through a simulation, the path-tracking and control performance of the mobile robot considering dynamics is compared with the considering kinetics only, and the possibility of real-time dynamic control is proved.


Author(s):  
G. Kalyan

Traffic congestion is now a big issue. Although it seems to penetrate throughout the world, urban towns are the ones which are most effected. And it is expanding in nature that it is necessary to understand the density of roads in real time to better regulate signals and efficient management of transport. Various traffic congestions, such as limited capacity, unrestricted demand, huge Red Light waits might occur. While insufficient capacity and unlimited demand are somehow interconnected, their delay in lighting is difficult to encode and not traffic dependant. The necessity to simulate and optimise traffic controls therefore arises in order to better meet this growing demand. The traffic management of information, ramp metering, and updates in real-time has been frequently used in recent years for image processing and monitoring systems. An image processing can also be used for the traffic density estimation. This research describes the approach for the computation of real-time traffic density by image processing for using live picture feed from cameras. It focuses also on the algorithm for the transmission of traffic signals on the road according to the density of vehicles and therefore aims to reduce road congestion, which reduces the number of accidents.


Author(s):  
Edward B. Lieberman ◽  
Jinil Chang ◽  
Elena Shenk Prassas

The formulation of a real-time traffic control policy designed expressly for oversaturated arterials is presented, and the operating protocol is described. Its objectives are to ( a) maximize system throughput, ( b) fully use storage capacity, and ( c) provide equitable service. This control policy, known as RT/IMPOST (real-time/internal metering policy to optimize signal timing), is designed to control queue growth on every saturated approach by suitably metering traffic to maintain stable queues. Consistent with this approach, bounds on queue lengths and signal offsets are determined. A mixed-integer linear program (MILP) tableau is formulated to yield optimal values of signal offsets and queue length for each approach. A nonlinear (quadratic) programming formulation adjusts the arterial green-phase durations of each signal cycle so that the actual arterial queue lengths on each saturated approach will continually closely approximate the optimal queue lengths computed by the MILP formulation. The policy principles are as follows: ( a) the signal phase durations “meter” traffic at intersections servicing oversaturated approaches to control and stabilize queue lengths and to provide equitable service to competing traffic streams; and ( b) the signal coordination (i.e., offsets) controls the interaction between incoming platoons and standing queues in a way that fully uses the available storage capacity, keeps intersections clear of queue spillback, and maximizes throughput.


Author(s):  
KEITH DECKER ◽  
ALAN GARVEY ◽  
MARTY HUMPHREY ◽  
VICTOR LESSER

Approximate processing is an approach to real-time AI problem solving in domains in which compromise is possible between the resources required to generate a solution and the quality of that solution. It is a satisficing approach in which the goal is to produce acceptable solutions within the available time and computational resource constraints. Previous work has shown how to integrate approximate processing knowledge sources within the blackboard architecture. However, in order to solve real-time problems with hard deadlines using a blackboard system, we need to have: (1) a predictable blackboard execution loop, (2) a representation of the set of current and future tasks and their estimated durations, and (3) a model of how to modify those tasks when their deadlines are projected to be missed, and how the modifications will affect the task durations and results. This paper describes four components for achieving this goal in an approximate processing blackboard system. A parameterized low-level control loop allows predictable knowledge source execution, multiple execution channels allow dynamic control over the computation involved in each task, a meta-controller allows a representation of the set of current and future tasks and their estimated durations and results, and a real-time blackboard scheduler monitors and modifies tasks during execution so that deadlines are met. An example is given that illustrates how these components work together to construct a satisficing solution to a time-constrained problem in the Distributed Vehicle Monitoring Testbed (DVMT).


2011 ◽  
Vol 64 (7) ◽  
pp. 1533-1539 ◽  
Author(s):  
C. Lacour ◽  
C. Joannis ◽  
M. Schuetze ◽  
G. Chebbo

This paper compares several real-time control (RTC) strategies for a generic configuration consisting of a storage tank with two overflow facilities. Two of the strategies only make use of flow rate data, while the third also introduces turbidity data in order to exercise dynamic control between two overflow locations. The efficiency of each strategy is compared over a wide range of system setups, described by two parameters. This assessment is performed by simulating the application of control strategies to actual measurements time series recorded on two sites. Adding turbidity measurements into an RTC strategy leads to a significant reduction in the annual overflow pollutant load. The pollutant spills spared by such a control strategy strongly depend on the site and on the flow rate based strategy considered as a reference. With the datasets used in this study, values ranging from 5 to 50% were obtained.


2013 ◽  
Vol 390 ◽  
pp. 398-402 ◽  
Author(s):  
Nicolas Andres Ordoñez ◽  
Carlos Francisco Rodríguez

This paper presents a real-time control strategy for the parallel robots such as the Stewart-Gough platform. The strategy is implemented using xPC Target (a Matlab toolbox), achieving sample rates higher than 1 kHz for the control loop. A modified explicit dynamic model, based on the virtual work principle, allows the formulation of dynamic control schemes, commonly used to control serial manipulators. Based on this approach, a computed torque control with friction compensation is implemented for a Stewart-Gough platform. Experimental results are compared with a classic uncoupled control strategy.


Sign in / Sign up

Export Citation Format

Share Document