scholarly journals Dynamics in a Delayed Neural Network Model of Two Neurons with Inertial Coupling

2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Changjin Xu ◽  
Peiluan Li

A delayed neural network model of two neurons with inertial coupling is dealt with in this paper. The stability is investigated and Hopf bifurcation is demonstrated. Applying the normal form theory and the center manifold argument, we derive the explicit formulas for determining the properties of the bifurcating periodic solutions. An illustrative example is given to demonstrate the effectiveness of the obtained results.

2005 ◽  
Vol 15 (09) ◽  
pp. 2883-2893 ◽  
Author(s):  
XIULING LI ◽  
JUNJIE WEI

A simple delayed neural network model with four neurons is considered. Linear stability of the model is investigated by analyzing the associated characteristic equation. It is found that Hopf bifurcation occurs when the sum of four delays varies and passes a sequence of critical values. The stability and direction of the Hopf bifurcation are determined by applying the normal form theory and the center manifold theorem. An example is given and numerical simulations are performed to illustrate the obtained results. Meanwhile, the bifurcation set is provided in the appropriate parameter plane.


2012 ◽  
Vol 2012 ◽  
pp. 1-11
Author(s):  
Changjin Xu ◽  
Peiluan Li

A four-dimensional neural network model with delay is investigated. With the help of the theory of delay differential equation and Hopf bifurcation, the conditions of the equilibrium undergoing Hopf bifurcation are worked out by choosing the delay as parameter. Applying the normal form theory and the center manifold argument, we derive the explicit formulae for determining the properties of the bifurcating periodic solutions. Numerical simulations are performed to illustrate the analytical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Haiyun Bai ◽  
Yanhui Zhai

We research the dynamics of the chemostat model with time delay. The conclusion confirms that a Hopf bifurcation occurs due to the existence of stability switches when the delay varies. By using the normal form theory and center manifold method, we derive the explicit formulas determining the stability and direction of bifurcating periodic solutions. Finally, some numerical simulations are given to illustrate the effectiveness of our results.


2006 ◽  
Vol 2006 ◽  
pp. 1-29 ◽  
Author(s):  
Xiang-Ping Yan ◽  
Wan-Tong Li

We first study the distribution of the zeros of a fourth-degree exponential polynomial. Then we apply the obtained results to a simplified bidirectional associated memory (BAM) neural network with four neurons and multiple time delays. By taking the sum of the delays as the bifurcation parameter, it is shown that under certain assumptions the steady state is absolutely stable. Under another set of conditions, there are some critical values of the delay, when the delay crosses these critical values, the Hopf bifurcation occurs. Furthermore, some explicit formulae determining the stability and the direction of periodic solutions bifurcating from Hopf bifurcations are obtained by applying the normal form theory and center manifold reduction. Numerical simulations supporting the theoretical analysis are also included.


2015 ◽  
Vol 25 (10) ◽  
pp. 1530026 ◽  
Author(s):  
Rui Yang ◽  
Yongli Song

In this paper, a diffusive activator–inhibitor model in vascular mesenchymal cells is considered. On one hand, we investigate the stability of the equilibria of the system without diffusion. On the other hand, for the unique positive equilibrium of the system with diffusion the conditions ensuring stability, existence of Hopf and steady state bifurcations are given. By applying the center manifold and normal form theory, the normal forms corresponding to Hopf bifurcation and steady state bifurcation are derived explicitly. Numerical simulations are employed to illustrate where the spatially homogeneous and nonhomogeneous periodic solutions and the steady states can emerge. The numerical results verify the obtained theoretical conclusions.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Yuanyuan Chen ◽  
Ya-Qing Bi

A delay-differential modelling of vector-borne is investigated. Its dynamics are studied in terms of local analysis and Hopf bifurcation theory, and its linear stability and Hopf bifurcation are demonstrated by studying the characteristic equation. The stability and direction of Hopf bifurcation are determined by applying the normal form theory and the center manifold argument.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Zizhen Zhang ◽  
Fangfang Yang ◽  
Wanjun Xia

This paper is concerned with the Hopf bifurcation of a synthetic drug transmission model with two delays. Firstly, some sufficient conditions of delay-induced bifurcation for such a model are captured by using different combinations of the two delays as the bifurcation parameter. Secondly, based on the center manifold theorem and normal form theory, some sufficient conditions determining properties of the Hopf bifurcation such as the direction and the stability are established. Finally, to underline the effectiveness of the obtained results, some numerical simulations are ultimately addressed.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Fengying Wei ◽  
Lanqi Wu ◽  
Yuzhi Fang

A kind of delayed predator-prey system with harvesting is considered in this paper. The influence of harvesting and delay is investigated. Our results show that Hopf bifurcations occur as the delayτpasses through critical values. By using of normal form theory and center manifold theorem, the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are obtained. Finally, numerical simulations are given to support our theoretical predictions.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Massimiliano Ferrara ◽  
Luca Guerrini ◽  
Giovanni Molica Bisci

Matsumoto and Szidarovszky (2011) examined a delayed continuous-time growth model with a special mound-shaped production function and showed a Hopf bifurcation that occurs when time delay passes through a critical value. In this paper, by applying the center manifold theorem and the normal form theory, we obtain formulas for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions. Moreover, Lindstedt’s perturbation method is used to calculate the bifurcated periodic solution, the direction of the bifurcation, and the stability of the periodic motion resulting from the bifurcation.


Sign in / Sign up

Export Citation Format

Share Document