scholarly journals Review of Recent Developments and the Future Prospective in West African Atmosphere/Land Interaction Studies

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Yongkang Xue ◽  
Aaron Boone ◽  
Christopher M. Taylor

This paper reviews West African land/atmosphere interaction studies during the past decade. Four issues are addressed in this paper: land data development, land/atmosphere interactions at seasonal-interannual scales, mesoscale studies, and the future prospective. The development of the AMMA Land Surface Model Intercomparison Project has produced a valuable analysis of the land surface state and fluxes which have been applied in a number of large-scale African regional studies. In seasonal-interannual West African climate studies, the latest evidence from satellite data analyses and modeling studies confirm that the West African region has a climate which is particularly sensitive to land surface processes and there is a strong coupling between land surface processes and regional climate at intraseasonal/seasonal scales. These studies indicate that proper land surface process representations and land status initialization would substantially improve predictions and enhance the predictability of West African climate. Mesoscale studies have revealed new understanding of how soil moisture heterogeneity influences the development of convective storms over the course of the diurnal cycle. Finally, several important issues regarding the future prospective are briefly addressed.

2011 ◽  
Vol 42 (2-3) ◽  
pp. 95-112 ◽  
Author(s):  
Venkat Lakshmi ◽  
Seungbum Hong ◽  
Eric E. Small ◽  
Fei Chen

The importance of land surface processes has long been recognized in hydrometeorology and ecology for they play a key role in climate and weather modeling. However, their quantification has been challenging due to the complex nature of the land surface amongst other reasons. One of the difficult parts in the quantification is the effect of vegetation that are related to land surface processes such as soil moisture variation and to atmospheric conditions such as radiation. This study addresses various relational investigations among vegetation properties such as Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI), surface temperature (TSK), and vegetation water content (VegWC) derived from satellite sensors such as Moderate Resolution Imaging Spectroradiometer (MODIS) and EOS Advanced Microwave Scanning Radiometer (AMSR-E). The study provides general information about a physiological behavior of vegetation for various environmental conditions. Second, using a coupled mesoscale/land surface model, we examine the effects of vegetation and its relationship with soil moisture on the simulated land–atmospheric interactions through the model sensitivity tests. The Weather Research and Forecasting (WRF) model was selected for this study, and the Noah land surface model (Noah LSM) implemented in the WRF model was used for the model coupled system. This coupled model was tested through two parameterization methods for vegetation fraction using MODIS data and through model initialization of soil moisture from High Resolution Land Data Assimilation System (HRLDAS). Finally, this study evaluates the model improvements for each simulation method.


2013 ◽  
Vol 17 (5) ◽  
pp. 1705-1714 ◽  
Author(s):  
F. Zabel ◽  
W. Mauser

Abstract. Most land surface hydrological models (LSHMs) consider land surface processes (e.g. soil–plant–atmosphere interactions, lateral water flows, snow and ice) in a spatially detailed manner. The atmosphere is considered as exogenous driver, neglecting feedbacks between the land surface and the atmosphere. On the other hand, regional climate models (RCMs) generally simulate land surface processes through coarse descriptions and spatial scales but include land–atmosphere interactions. What is the impact of the differently applied model physics and spatial resolution of LSHMs on the performance of RCMs? What feedback effects are induced by different land surface models? This study analyses the impact of replacing the land surface module (LSM) within an RCM with a high resolution LSHM. A 2-way coupling approach was applied using the LSHM PROMET (1 × 1 km2) and the atmospheric part of the RCM MM5 (45 × 45 km2). The scaling interface SCALMET is used for down- and upscaling the linear and non-linear fluxes between the model scales. The change in the atmospheric response by MM5 using the LSHM is analysed, and its quality is compared to observations of temperature and precipitation for a 4 yr period from 1996 to 1999 for the Upper Danube catchment. By substituting the Noah-LSM with PROMET, simulated non-bias-corrected near-surface air temperature improves for annual, monthly and daily courses when compared to measurements from 277 meteorological weather stations within the Upper Danube catchment. The mean annual bias was improved from −0.85 to −0.13 K. In particular, the improved afternoon heating from May to September is caused by increased sensible heat flux and decreased latent heat flux as well as more incoming solar radiation in the fully coupled PROMET/MM5 in comparison to the NOAH/MM5 simulation. Triggered by the LSM replacement, precipitation overall is reduced; however simulated precipitation amounts are still of high uncertainty, both spatially and temporally. The distribution of precipitation follows the coarse topography representation in MM5, resulting in a spatial shift of maximum precipitation northwards of the Alps. Consequently, simulation of river runoff inherits precipitation biases from MM5. However, by comparing the water balance, the bias of annual average runoff was improved from 21.2% (NOAH/MM5) to 4.4% (PROMET/MM5) when compared to measurements at the outlet gauge of the Upper Danube watershed in Achleiten.


2016 ◽  
Vol 48 (5-6) ◽  
pp. 1705-1721 ◽  
Author(s):  
Yanhong Gao ◽  
Linhong Xiao ◽  
Deliang Chen ◽  
Fei Chen ◽  
Jianwei Xu ◽  
...  

2021 ◽  
Author(s):  
Daniela C.A. Lima ◽  
Rita M. Cardoso ◽  
Pedro M.M. Soares

<p>The Weather Research and Forecasting (WRF) model version 4.2 includes different land surface schemes, allowing a better representation of the land surface processes. Four simulations with the WRF model differing in land surface models and options were investigated as a sensitivity study over the European domain. These experiments span from 2004-2006 with a one-month spin-up and were performed at 0.11<sup>o</sup> horizontal resolution with 50 vertical levels, following the CORDEX guidelines. The lateral boundary conditions were driven by ERA5 reanalysis from European Centre for Medium-Range Weather Forecasts. For the first experiment, the Noah land surface model was used. For the remaining simulations, the Noah-MP (multi-physics) land surface model was used with different runoff and groundwater options: (1) original surface and subsurface runoff (free drainage), (2) TOPMODEL with groundwater and (3) Miguez-Macho & Fan groundwater scheme. The physical parameterizations options are the same for all simulations. These experiments allow the analysis of the sensitivity of different land surface options and to understand how the representation of land surface processes impacts on the atmosphere properties. This study focusses on the investigation of land-atmosphere feedbacks trough the analysis of the soil moisture – temperature and soil moisture – precipitation interactions, latent and sensible heat fluxes, and moisture fluxes. The influence of different surface model options on atmospheric boundary layer is also explored.</p><p>Acknowledgements. The authors wish to acknowledge the LEADING (PTDC/CTA-MET/28914/2017) project funded by FCT. The authors would like to acknowledge the financial support FCT through project UIDB/50019/2020 – Instituto Dom Luiz.</p>


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Wei Zhao ◽  
Ainong Li

Complex terrain, commonly represented by mountainous region, occupies nearly one-quarter of the Earth’s continental areas. An accurate understanding of water cycle, energy exchange, carbon cycle, and many other biogeophysical or biogeochemical processes in this area has become more and more important for climate change study. Due to the influences from complex topography and rapid variation in elevation, it is usually difficult for field measurements to capture the land-atmosphere interactions well, whereas land surface model (LSM) simulation provides a good alternative. A systematic review is introduced by pointing out the key issues for land surface processes simulation over complex terrain: (1) high spatial heterogeneity for land surface parameters in horizontal direction, (2) big variation of atmospheric forcing data in vertical direction related to elevation change, (3) scale effect on land surface parameterization in LSM, and (4) two-dimensional modelling which considers the gravity influence. Regarding these issues, it is promising for better simulation at this special region by involving higher spatial resolution atmospheric forcing data which can reflect the influences from topographic changes and making necessary improvements on model structure related to topographic factors. In addition, the incorporation of remote sensing techniques will significantly help to reduce uncertainties in model initialization, simulation, and validation.


Sign in / Sign up

Export Citation Format

Share Document