dynamic downscaling
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 13)

H-INDEX

17
(FIVE YEARS 1)

Author(s):  
S. M. T. C. Samarasingha ◽  
M. S. Sandaruwan ◽  
D. S. Sampath ◽  
N. G. P. B. Neluwala

Urban Climate ◽  
2021 ◽  
Vol 38 ◽  
pp. 100912
Author(s):  
Rakesh Kadaverugu ◽  
Vigna Purohit ◽  
Chandrasekhar Matli ◽  
Rajesh Biniwale

Author(s):  
Jun Ge ◽  
Bo Qiu ◽  
Runqi Wu ◽  
Yipeng Cao ◽  
Weidan Zhou ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Carlos Calvo-Sancho ◽  
Yago Martín

<p>Supercell thunderstorms are often associated with severe weather conditions, such as tornadoes, hail, strong wind gusts, heavy rainfall, and flash-floods, producing damage to populations and assets. The goal of the study is to analyze and improve our understanding of pre-convective environments conducive for supercell development in the different regions of Spain. We use 2014-2020 data from the Spanish Supercell Database (Martin et al., 2020), ERA-5 reanalysis, and a dynamical downscaling with WRF-ARW model to a 9 km spatial resolution to be able to generate sounding-derived parameters at the moment of formation of each supercell. Results indicate that supercells are more common in high values of CAPE and Shear 0-6 Km, but in the south-western of Spain predominates supercells of HSLC (High Shear-Low CAPE) in the cold season.</p>


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
De Zhang ◽  
Luyuan Chen ◽  
Feimin Zhang ◽  
Juan Tan ◽  
Chenghai Wang

Accurate forecast and simulation of near-surface wind is a great challenge for numerical weather prediction models due to the significant transient and intermittent nature of near-surface wind. Based on the analyses of the impact of assimilating in situ and Advanced Tiros Operational Vertical Sounder (ATOVS) satellite radiance data on the simulation of near-surface wind during a severe wind event, using the new generation mesoscale Weather Research and Forecasting (WRF) model and its three-dimensional variational (3DVAR) data assimilation system, the dynamic downscaling of near-surface wind is further investigated by coupling the microscale California Meteorological (CALMET) model with the WRF and its 3DVAR system. Results indicate that assimilating in situ and ATOVS radiance observations strengthens the airflow across the Alataw valley and triggers the downward transport of momentum from the upper atmosphere in the downstream area of the valley in the initial conditions, thus improving near-surface wind simulations. Further investigations indicate that the CALMET model provides more refined microtopographic structures than the WRF model in the vicinity of the wind towers. Although using the CALMET model achieves the best simulation of near-surface wind through dynamic downscaling of the output from the WRF and its 3DVAR assimilation, the simulation improvements of near-surface wind speed are mainly within 1 m s−1. Specifically, the mean improvement proportions of near-surface wind speed are 64.8% for the whole simulation period, 58.7% for the severe wind period, 68.3% for the severe wind decay period, and 75.4% for the weak wind period. The observed near-surface wind directions in the weak wind conditions are better simulated in the coupled model with CALMET downscaling than in the WRF and its 3DVAR system. It is concluded that the simulation improvements of CALMET downscaling are distinct when near-surface winds are weak, and the downscaling effects are mainly manifested in the simulation of near-surface wind directions.


Author(s):  
Lia Pervin ◽  
Thian Yew Gan

Abstract The Weather Research and Forecasting (WRF) model was tested through 18 different combinations of physics parameters to simulate the regional climate over the Mackenzie River Basin (MRB). The objective was to investigate the response to the physics parameters for dynamic downscaling of climatic variables. The rainfall, temperature, albedo, and surface pressure from the 18 different WRF setups were compared with the reference data and were found sensitive to land surface physics and microphysics and to the radiation physics. The combination of Noah Land Surface Physics with the WRF Single-moment 6-class microphysics and CAM shortwave and longwave schemes produced comparable results for summer 2009. This WRF setup was further tested for summers 1979–1991 and it was found that WRF could simulate air temperature more accurately than the rainfall, since the rainfall over the mountainous regions was over-simulated. Then the selected combinations of WRF parameterizations were used to downscale the CanESM2 historical temperature and rainfall for summers 1979–2005, which showed good agreement with the reference data. The suggested WRF parameters from this study could be utilized for regional climate modeling of MRB.


2020 ◽  
Author(s):  
Hussain Alsarraf

<p>The purpose of this study is to examine the impact of climate change on the changes on summer surface temperatures between present (2000-2010) and future (2050-2060) over the Arabian Peninsula and Kuwait. In this study, the influence of climate change in the Arabian Peninsula and especially in Kuwait was investigated by high resolution (36, 12, and 4 km grid spacing) dynamic downscaling from the Community Climate System Model CCSM4 using the WRF Weather Research and Forecasting model. The downscaling results were first validated by comparing National Centers for Environmental Prediction NCEP model outputs with the observational data. The global climate change dynamic downscaling model was run using WRF regional climate model simulations (2000-2010) and future projections (2050-2060). The influence of climate change in the Arabian Peninsula can be projected from the differences between the two period’s model simulations. The regional model simulations of the average maximum surface temperature in summertime predicted an increase from 1◦C to 3 ◦C over the summertime in Kuwait by midcentury.</p><p><strong> </strong></p>


2020 ◽  
Vol 59 (2) ◽  
pp. 207-235 ◽  
Author(s):  
Lei Zhang ◽  
YinLong Xu ◽  
ChunChun Meng ◽  
XinHua Li ◽  
Huan Liu ◽  
...  

AbstractIn aiming for better access to climate change information and for providing climate service, it is important to obtain reliable high-resolution temperature simulations. Systematic comparisons are still deficient between statistical and dynamic downscaling techniques because of their inherent unavoidable uncertainties. In this paper, 20 global climate models (GCMs) and one regional climate model [Providing Regional Climates to Impact Studies (PRECIS)] are employed to evaluate their capabilities in reproducing average trends of mean temperature (Tm), maximum temperature (Tmax), minimum temperature (Tmin), diurnal temperature range (DTR), and extreme events represented by frost days (FD) and heat-wave days (HD) across China. It is shown generally that bias of temperatures from GCMs relative to observations is over ±1°C across more than one-half of mainland China. PRECIS demonstrates better representation of temperatures (except for HD) relative to GCMs. There is relatively better performance in Huanghuai, Jianghuai, Jianghan, south Yangzi River, and South China, whereas estimation is not as good in Xinjiang, the eastern part of northwest China, and the Tibetan Plateau. Bias-correction spatial disaggregation is used to downscale GCMs outputs, and bias correction is applied for PRECIS outputs, which demonstrate better improvement to a bias within ±0.2°C for Tm, Tmax, Tmin, and DTR and ±2 days for FD and HD. Furthermore, such improvement is also verified by the evidence of increased spatial correlation coefficient and symmetrical uncertainty, decreased root-mean-square error, and lower standard deviation for reproductions. It is seen from comprehensive ranking metrics that different downscaled models show the most improvement across different climatic regions, implying that optional ensembles of models should be adopted to provide sufficient high-quality climate information.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 111012-111026
Author(s):  
Xuemin Cheng ◽  
Kaichang Cheng ◽  
Hongsheng Bi

Sign in / Sign up

Export Citation Format

Share Document