scholarly journals Protein Kinase C: One Pathway towards the Eradication of Latent HIV-1 Reservoirs

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Lisa N. McKernan ◽  
David Momjian ◽  
Joseph Kulkosky

An effective means to eradicate latent reservoirs in HIV-1-infected individuals remains elusive. Attempts to purge these reservoirs were undertaken over a decade ago without success. The subsequent lapse in further clinical attempts since may have been justified as our knowledge of the mechanisms which underpin the latent state still evolves. Although additional novel molecular antagonists of HIV-1 latency have subsequently been reported, these candidate agents have not been tested in human trials for reservoir ablation. This review provides an overview of the protein kinase C (PKC) pathway which can be modulated by small molecular agents to induce the expression of latent HIV-1 from within infected reservoir cells. Some of these agents have been tested against select cancers with seemingly tolerable side effects. As such, modulation of the PKC pathway may yet be a viable mechanism toward HIV-1 reservoir eradication.

2011 ◽  
Vol 12 (3) ◽  
pp. 348-356 ◽  
Author(s):  
Gonzalo Sanchez-Duffhues ◽  
Minh Q. Vo ◽  
Moises Perez ◽  
Marco A. Calzado ◽  
Santiago Moreno ◽  
...  

2015 ◽  
Vol 58 (21) ◽  
pp. 8638-8646 ◽  
Author(s):  
Weihong Lai ◽  
Li Huang ◽  
Lei Zhu ◽  
Guido Ferrari ◽  
Cliburn Chan ◽  
...  

2021 ◽  
Author(s):  
Uri Mbonye ◽  
Konstantin Leskov ◽  
Meenakshi Shukla ◽  
Saba Valadkhan ◽  
Jonathan Karn

The switch between HIV latency and productive transcription is regulated by an auto-feedback mechanism initiated by the viral trans-activator Tat, which functions to recruit the host transcription elongation factor P-TEFb to proviral HIV. A heterodimeric complex of CDK9 and one of three cyclin T subunits, P-TEFb is expressed at vanishingly low levels in resting memory CD4 + T cells and cellular mechanisms controlling its availability are central to regulation of the emergence of HIV from latency. Using a well-characterized primary T-cell model of HIV latency alongside healthy donor memory CD4 + T cells, we characterized specific T-cell receptor (TCR) signaling pathways that regulate the generation of transcriptionally active P-TEFb, defined as the coordinate expression of cyclin T1 and phospho-Ser175 CDK9. Protein kinase C (PKC) agonists, such as ingenol and prostratin, stimulated active P-TEFb expression and reactivated latent HIV with minimal cytotoxicity, even in the absence of intracellular calcium mobilization with an ionophore. Unexpectedly, inhibition-based experiments demonstrated that PKC agonists and TCR-mobilized diacylglycerol signal through MAP kinases ERK1/2 rather than through PKC to effect the reactivation of both P-TEFb and latent HIV. Single-cell and bulk RNA-seq analyses revealed that of the four known isoforms of the Ras guanine nucleotide exchange factor RasGRP, RasGRP1 is by far the predominantly expressed diacylglycerol-dependent isoform in CD4 + T cells. RasGRP1 should therefore mediate the activation of ERK1/2 via Ras-Raf signaling upon TCR co-stimulation or PKC agonist challenge. Combined inhibition of the PI3K-mTORC2-AKT-mTORC1 pathway and the ERK1/2 activator MEK prior to TCR co-stimulation abrogated active P-TEFb expression and substantially suppressed latent HIV reactivation. Therefore, contrary to prevailing models, the coordinate reactivation of P-TEFb and latent HIV in primary T cells following either TCR co-stimulation or PKC agonist challenge is independent of PKC but rather involves two complementary signaling arms of the TCR cascade, namely, RasGRP1-Ras-Raf-MEK-ERK1/2 and PI3K-mTORC2-AKT-mTORC1.


Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 609
Author(s):  
Francesca Curreli ◽  
Shahad Ahmed ◽  
Sofia M. Benedict Victor ◽  
Asim K. Debnath

Combination antiretroviral therapy (cART) is successful in maintaining undetectable levels of HIV in the blood; however, the persistence of latent HIV reservoirs has become the major barrier for a HIV cure. Substantial efforts are underway in finding the best latency-reversing agents (LRAs) to purge the latent viruses from the reservoirs. We hypothesize that identifying the right combination of LRAs will be the key to accomplishing that goal. In this study, we evaluated the effect of combinations of three protein kinase C activators (prostratin, (-)-indolactam V, and TPPB) with four histone deacetylase inhibitors (AR-42, PCI-24781, givinostat, and belinostat) on reversing HIV latency in different cell lines including in a primary CD4+ T-cell model. Combinations including indolactam and TPPB with AR-42 and PCI produced a strong synergistic effect in reactivating latent virus as indicated by higher p24 production and envelope gp120 expression. Furthermore, treatment with TPPB and indolactam greatly downregulated the cellular receptor CD4. Indolactam/AR-42 combination emerged from this study as the best combination that showed a strong synergistic effect in reactivating latent virus. Although AR-42 alone did not downregulate CD4 expression, indolactam/AR-42 showed the most efficient downregulation. Our results suggest that indolactam/AR-42 is the most effective combination, showing a strong synergistic effect in reversing HIV latency combined with the most efficient CD4 downregulation.


Virology ◽  
1990 ◽  
Vol 176 (1) ◽  
pp. 126-132 ◽  
Author(s):  
Md.Iqbal Hossain Chowdhury ◽  
Yoshio Koyanagi ◽  
Susumu Kobayashi ◽  
Yoshiaki Hamamoto ◽  
Hironori Yoshiyama ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2198-2198
Author(s):  
Namita Kumari ◽  
Sergei A Nekhai

Abstract Background Recently, HIV-1 infection was shown to be efficiently inhibited in macrophages and T-cells treated with hemin that was added extracellularly 1,2. Hemin administration to humanized transgenic mice significantly reduced HIV-1 viral load 1. Suppression of HIV-1 by hemin was mediated through the induction of (HO-1)1, via a protein kinase C-dependent pathway2. The inhibitory effect of hemin could be reversed by protoporphyrin, an HO-1 inhibitor 2. Induction of heme oxygenase-1 (HO-1) by hemin was shown to inhibit HIV-1. We recently analyzed the role of HO-1 in protecting LPS-treated human macrophages against HIV-1 infection3. LPS-treated macrophages were negative for mature virions, expressed HO-1 and produced MIP1α, MIP1β and LD78β chemokines which led to a decreased CCR5 expression. Treatment with HO-1 inhibitor SnPP IX (tin protoporphyrin IX) increased HIV-1 replication and decreased secretion of MIP1α, MIP1β, and LD78β chemokines. HO-1 also affects several proteins involved in cell cycle progression, and cell cycle is critical for HIV-1 progression. Hypoxia leads to induction and stabilization of HIF-1α and is inhibitory to HIV-1 replication. NF-kB is important for basal and Tat-activated HIV-1 transcription. Here we analyzed factors involved in HIV-1 transcription affected by HO-1 expression. Results HIV-1 replication was reduced in THP1 cells treated with hemin. Subsequent treatment with hepcidin restored HIV-1 replication, suggesting that ferroportin plays a key role in the HIV-1 inhibition. Stable ferroportin knock down in THP1 cells led to the inability of hemin to inhibit HIV-1, again suggesting that ferroportin plays a key role in this process. In hemin-treated THP-1 cells, expression of p21, HIF-1α and IKBα mRNA was induced. The expression of IKBα, an inhibitor of NF-kB, reduced the level of p65 subunit of NF-kB. We obtained similar results in THP-1 cell treated with iron chelators, which also induced the expression of IKBα, HIF-1 and p21. THP-1 cells treated with hemin or iron chelators were arrested in G1 phase of cell cycle. Stable HIF-1a knockdown in promonocytic THP-1 cells increased HIV replication suggesting that HIF-1 might be a restriction factor for HIV-1. In contrast to iron chelators that inhibited enzymatic activity of CDK2 without affecting its protein level, hemin treatment reduced CDK2 expression at mRNA and protein levels. Conclusions Induction of HIF-1 regulatory pathway and iron export by ferroportin might protect hemin-treated THP-1 cells from HIV-1 infection. Additional molecular mechanisms of heme-mediated HIV-1 inhibition might also include NF-kB inhibition by IKBα and CDK2 inhibition leading to the inhibition of HIV-1 transcription. Our results point to novel therapeutics, such as the use of hemin and iron chelators, both of which are FDA approved for treatment for acute porphyries and iron overload. Acknowledgments This project was supported by NIH Research Grants 1SC1GM082325, 2G12RR003048, and P30HL107253. Literature 1. Devadas K, Dhawan S. Hemin activation ameliorates HIV-1 infection via heme oxygenase-1 induction. J Immunol. 2006;176(7):4252-4257. 2. Devadas K, Hewlett IK, Dhawan S. Lipopolysaccharide suppresses HIV-1 replication in human monocytes by protein kinase C-dependent heme oxygenase-1 induction. J Leukoc Biol. 2010;87(5):915-924. 3. Zhou ZH, Kumari N, Nekhai S, et al. Heme oxygenase-1 induction alters chemokine regulation and ameliorates human immunodeficiency virus-type-1 infection in lipopolysaccharide-stimulated macrophages. Biochem Biophys Res Commun. 2013;435(3):373-377. Disclosures: No relevant conflicts of interest to declare.


2011 ◽  
Vol 187 (2) ◽  
pp. 748-759 ◽  
Author(s):  
Rui André Saraiva Raposo ◽  
David C. Trudgian ◽  
Benjamin Thomas ◽  
Bonnie van Wilgenburg ◽  
Sally A. Cowley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document