scholarly journals -Stable Derivative-Free Error-Corrected Trapezoidal Rule for Burgers' Equation with Inconsistent Initial and Boundary Conditions

2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Lajja Verma

We combine suitable arithmetic average approximations, with explicit backward Euler formula, and derive a third-order -stable derivative-free error-corrected trapezoidal rule (LSDFECT). Then, we apply LSDFECT rule to the linearized Burgers' equation with inconsistent initial and boundary conditions and test its stability and exactness. We use Mathematica 7.0 for computation.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Li-Bin Liu ◽  
Ying Liang ◽  
Xiaobing Bao ◽  
Honglin Fang

AbstractA system of singularly perturbed convection-diffusion equations with Robin boundary conditions is considered on the interval $[0,1]$ [ 0 , 1 ] . It is shown that any solution of such a problem can be expressed to a system of first-order singularly perturbed initial value problem, which is discretized by the backward Euler formula on an arbitrary nonuniform mesh. An a posteriori error estimation in maximum norm is derived to design an adaptive grid generation algorithm. Besides, in order to establish the initial values of the original problems, we construct a nonlinear optimization problem, which is solved by the Nelder–Mead simplex method. Numerical results are given to demonstrate the performance of the presented method.


1971 ◽  
Vol 2 (3) ◽  
pp. 146-166 ◽  
Author(s):  
DAVID A. WOOLHISER

Physically-based, deterministic models, are considered in this paper. Physically-based, in that the models have a theoretical structure based primarily on the laws of conservation of mass, energy, or momentum; deterministic in the sense that when initial and boundary conditions and inputs are specified, the output is known with certainty. This type of model attempts to describe the structure of a particular hydrologic process and is therefore helpful in predicting what will happen when some change occurs in the system.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ji Lin ◽  
Yuhui Zhang ◽  
Chein-Shan Liu

AbstractFor nonlinear third-order three-point boundary value problems (BVPs), we develop two algorithms to find solutions, which automatically satisfy the specified three-point boundary conditions. We construct a boundary shape function (BSF), which is designed to automatically satisfy the boundary conditions and can be employed to develop new algorithms by assigning two different roles of free function in the BSF. In the first algorithm, we let the free functions be complete functions and the BSFs be the new bases of the solution, which not only satisfy the boundary conditions automatically, but also can be used to find solution by a collocation technique. In the second algorithm, we let the BSF be the solution of the BVP and the free function be another new variable, such that we can transform the BVP to a corresponding initial value problem for the new variable, whose initial conditions are given arbitrarily and terminal values are determined by iterations; hence, we can quickly find very accurate solution of nonlinear third-order three-point BVP through a few iterations. Numerical examples confirm the performance of the new algorithms.


2003 ◽  
Vol 2003 (43) ◽  
pp. 2735-2746 ◽  
Author(s):  
Ekaterina T. Kolkovska

We consider the one-dimensional Burgers equation perturbed by a white noise term with Dirichlet boundary conditions and a non-Lipschitz coefficient. We obtain existence of a weak solution proving tightness for a sequence of polygonal approximations for the equation and solving a martingale problem for the weak limit.


1998 ◽  
Vol 21 (2) ◽  
pp. 299-305 ◽  
Author(s):  
Fengxin Chen ◽  
Ping Wang ◽  
Chaoshun Qu

In this paper we study the system governing flows in the magnetic field within the earth. The system is similar to the magnetohydrodynamic (MHD) equations. For initial data in spaceLp, we obtained the local in time existence and uniqueness ofweak solutions of the system subject to appropriate initial and boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document