Influence of Initial and Boundary Conditions on Solute Transport through Undisturbed Soil Columns

2004 ◽  
Vol 68 (2) ◽  
pp. 404 ◽  
Author(s):  
C. J. Hamlen ◽  
R. G. Kachanoski
Soil Research ◽  
2014 ◽  
Vol 52 (1) ◽  
pp. 13 ◽  
Author(s):  
Dirk Mallants

Transport parameters obtained from laboratory tracer experiments were used to evaluate the stochastic form of the equilibrium convection–dispersion equation (CDE) in describing the transition of scale, i.e. from the column or local scale to a larger field scale. Local-scale solute breakthrough curves (BTCs) were measured in 1-m-long and 0.3-m-diameter undisturbed soil columns by means of time-domain reflectometry at six depths for a 79-h input pulse of chloride. The local-scale data were analysed in terms of the equilibrium CDE and the mobile–immobile non-equilibrium transport model (MIM). At the local scale, the MIM transport model better described the observed early breakthrough and the tailing of the BTC than did the CDE. A linear regression analysis indicated that the relationship between the hydrodynamic dispersion D and pore-water velocity v was of the form D = 31vl.92 (correlation ρv,D = 0.74). Averaging of the local-scale BTCs across the field produced a large-scale or field-scale mean BTC; at the greatest observation depth (0.8 m) the field-scale dispersivity <D>/<v> = λ equals 0.656 m. The results further showed that for large values of the mean dispersion coefficient, <D>, local-scale dispersion is an important mechanism for field-scale solute spreading, whereas the standard deviation, σD, and the correlation between v and D, ρvD, have negligible effects on field-scale transport. Stochastic stream tube models supplemented with statistical properties of local-scale transport parameters provide a practical and computationally efficient tool to describe heterogeneous solute transport at large spatial scales.


2020 ◽  
Vol 15 (1) ◽  
pp. 93-102
Author(s):  
Cristian PĂLTINEANU ◽  
◽  
Andrei VRINCEANU ◽  
Anca-Rovena LĂCĂTUȘU ◽  
Radu LĂCĂTUŞU ◽  
...  

1971 ◽  
Vol 2 (3) ◽  
pp. 146-166 ◽  
Author(s):  
DAVID A. WOOLHISER

Physically-based, deterministic models, are considered in this paper. Physically-based, in that the models have a theoretical structure based primarily on the laws of conservation of mass, energy, or momentum; deterministic in the sense that when initial and boundary conditions and inputs are specified, the output is known with certainty. This type of model attempts to describe the structure of a particular hydrologic process and is therefore helpful in predicting what will happen when some change occurs in the system.


1998 ◽  
Vol 21 (2) ◽  
pp. 299-305 ◽  
Author(s):  
Fengxin Chen ◽  
Ping Wang ◽  
Chaoshun Qu

In this paper we study the system governing flows in the magnetic field within the earth. The system is similar to the magnetohydrodynamic (MHD) equations. For initial data in spaceLp, we obtained the local in time existence and uniqueness ofweak solutions of the system subject to appropriate initial and boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document