scholarly journals Fixed Point Theorems for Asymptotically Contractive Multimappings

2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
M. Djedidi ◽  
K. Nachi

We present fixed point theorems for a nonexpansive set-valued mapping from a closed convex subset of a reflexive Banach space into itself under some asymptotic contraction assumptions. Some existence results of coincidence points and eigenvalues for multimappings are given.

Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 1022
Author(s):  
Eskandar Naraghirad ◽  
Luoyi Shi ◽  
Ngai-Ching Wong

The Opial property of Hilbert spaces is essential in many fixed point theorems of non-expansive maps. While the Opial property does not hold in every Banach space, the Bregman–Opial property does. This suggests to study fixed point theorems for various Bregman non-expansive like maps in the general Banach space setting. In this paper, after introducing the notion of Bregman generalized hybrid sequences in a reflexive Banach space, we prove (with using the Bregman–Opial property instead of the Opial property) convergence theorems for such sequences. We also provide new fixed point theorems for Bregman generalized hybrid maps defined on an arbitrary but not necessarily convex subset of a reflexive Banach space. We end this paper with a brief discussion of the existence of Bregman absolute fixed points of such maps.


2017 ◽  
Vol 26 (2) ◽  
pp. 231-240
Author(s):  
AHMED H. SOLIMAN ◽  
MOHAMMAD IMDAD ◽  
MD AHMADULLAH

In this paper, we consider a new uniformly generalized Kannan type semigroup of self-mappings defined on a closed convex subset of a real Banach space equipped with uniform normal structure and employ the same to show that such semigroup of self-mappings admits a common fixed point provided the underlying semigroup of self-mappings has a bounded orbit.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yiliang Liu ◽  
Liang Lu

We study a class of nonlinear fractional integrodifferential equations withp-Laplacian operator in Banach space. Some new existence results are obtained via fixed point theorems for nonlocal boundary value problems of fractionalp-Laplacian equations. An illustrative example is also discussed.


2017 ◽  
Vol 24 (4) ◽  
Author(s):  
Bashir Ahmad ◽  
Sotiris K. Ntouyas

AbstractIn this paper, we study a class of Riemann–Liouville fractional differential inclusions with fractional boundary conditions. By using standard fixed point theorems, we obtain some new existence results for convex as well as nonconvex multi-valued mappings in an appropriate Banach space. The obtained results are illustrated by examples.


2003 ◽  
Vol 2003 (6) ◽  
pp. 375-386 ◽  
Author(s):  
T. Domínguez Benavides ◽  
P. Lorenzo Ramírez

LetXbe a Banach space whose characteristic of noncompact convexity is less than1and satisfies the nonstrict Opial condition. LetCbe a bounded closed convex subset ofX,KC(C)the family of all compact convex subsets ofC, andTa nonexpansive mapping fromCintoKC(C). We prove thatThas a fixed point. The nonstrict Opial condition can be removed if, in addition,Tis a1-χ-contractive mapping.


2021 ◽  
Vol 20 ◽  
pp. 50-55
Author(s):  
Maha Mousa ◽  
Salwa Salman Abed

In this paper, inspired by the concept of metric space, two fixed point theorems for α−set-valued mapping T:₳ → CB(₳), h θ (Tp,Tq) ≤ α(dθ(p,q)) dθ(p,q), where α: (0,∞) → (0, 1] such that α(r) < 1, ∀ t ∈ [0,∞) ) are given in complete θ −metric and then extended for two mappings with R-weakly commuting property to obtain a common coincidence point.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Manar A. Alqudah ◽  
C. Ravichandran ◽  
Thabet Abdeljawad ◽  
N. Valliammal

AbstractThis article deals with existence results of Caputo fractional neutral inclusions without compactness in Banach space using weak topology. In fact, for weakly sequentially closed maps we apply fixed point theorems to obtain the existence of the solution. Furthermore, the results are manifested for fractional neutral system held by nonlocal conditions. To justify the application of the reported results an illustration is presented.


2021 ◽  
Vol 23 (4) ◽  
Author(s):  
Jifeng Chu ◽  
Kateryna Marynets

AbstractThe aim of this paper is to study one class of nonlinear differential equations, which model the Antarctic circumpolar current. We prove the existence results for such equations related to the geophysical relevant boundary conditions. First, based on the weighted eigenvalues and the theory of topological degree, we study the semilinear case. Secondly, the existence results for the sublinear and superlinear cases are proved by fixed point theorems.


Author(s):  
Brian Fisher ◽  
Salvatore Sessa

We consider two selfmapsTandIof a closed convex subsetCof a Banach spaceXwhich are weakly commuting inX, i.e.‖TIx−ITx‖≤‖Ix−Tx‖   for   any   x   in   X,and satisfy the inequality‖Tx−Ty‖≤a‖Ix−Iy‖+(1−a)max{‖Tx−Ix‖,‖Ty−Iy‖}for allx,yinC, where0<a<1. It is proved that ifIis linear and non-expansive inCand such thatICcontainsTC, thenTandIhave a unique common fixed point inC.


Sign in / Sign up

Export Citation Format

Share Document