scholarly journals A Closed Form Solution for Nonlinear Oscillators Frequencies Using Amplitude-Frequency Formulation

2012 ◽  
Vol 19 (6) ◽  
pp. 1415-1426 ◽  
Author(s):  
A. Barari ◽  
A. Kimiaeifar ◽  
M.G. Nejad ◽  
M. Motevalli ◽  
M.G. Sfahani

Many nonlinear systems in industry including oscillators can be simulated as a mass-spring system. In reality, all kinds of oscillators are nonlinear due to the nonlinear nature of springs. Due to this nonlinearity, most of the studies on oscillation systems are numerically carried out while an analytical approach with a closed form expression for system response would be very useful in different applications. Some analytical techniques have been presented in the literature for the solution of strong nonlinear oscillators as well as approximate and numerical solutions. In this paper, Amplitude-Frequency Formulation (AFF) approach is applied to analyze some periodic problems arising in classical dynamics. Results are compared with another approximate analytical technique called Energy Balance Method developed by the authors (EBM) and also numerical solutions. Close agreement of the obtained results reveal the accuracy of the employed method for several practical problems in engineering.

Author(s):  
Theodore G. Mordfin ◽  
Sivakumar S. K. Tadikonda

Abstract Guidelines are sought for generating component body models for use in controlled, articulated, flexible multibody dynamics system simulations. In support of this effort, exact closed-form and numerical solutions are developed for the small elastic motions of a planar, flexible, single link system, in which the link is represented as an Euler-Bernoulli bar in transverse vibration. The link is connected to ground by a pin joint, and the articulation is controlled by proportional and proprotional/derivative (PD) feedback control laws. The characteristics of the closed-form solution are shown to consist of combinations of the characteristic expressions associated with classical end conditions. A large-articulation flexible body model of a controlled-articulation flexible link is then developed and linearized about an arbitrary reference angle. This model uses the method of assumed modes to represent the flexible behavior of the link. It is shown the model is analytically equivalent to a purely structural model which uses a hybrid set of assumed modes, and that numerical convergence can be investigated in terms of admissible functions and quasi-comparison functions. Numerical evaluation of the use of various types of assumed modes is presented in a companion paper.


2018 ◽  
Vol 55 (6) ◽  
pp. 810-828 ◽  
Author(s):  
Abtin Jahanbakhshzadeh ◽  
Michel Aubertin ◽  
Li Li

Backfill is commonly used world-wide in underground mines to improve ground stability and reduce solid waste disposal on the surface. Practical solutions are required to assess the stress state in the backfilled stopes, as the stress state is influenced by the fill settlement that produces a stress transfer to the adjacent rock walls. The majority of existing analytical and numerical solutions for the stresses in backfilled openings were developed for two-dimensional (plane strain) conditions. In reality, mine stopes have a limited extension in the horizontal plane so the stresses are influenced by the four walls. This paper presents recent three-dimensional (3D) simulations results and a new 3D closed-form solution for the vertical and horizontal stresses in inclined backfilled stopes with parallel walls. This solution takes into account the variation of the stresses along the opening width and height, for various inclination angles and fills properties. The numerical results are used to validate the analytical solution and illustrate how the stress state varies along the opening height, length, and width, for different opening sizes and inclination angles of the footwall and hanging wall. Experimental results are also used to assess the validity of the proposed solution.


2011 ◽  
Vol 63-64 ◽  
pp. 147-151
Author(s):  
Li Ming Chu ◽  
Wang Long Li ◽  
Hsiang Chen Hsu

In this paper, the numerical solutions in pure squeeze motion are explored by using hydrodynamic lubrication (HL) and elastohydrodynamic lubrication (EHL) models at constant squeeze velocity with power law lubricants. This paper also proposes a closed form solution to calculate the relationship between central pressure and central film thickness under HL condition. In order to save time calculation, the present closed form solution can be used as the initial condition for analysis of EHL at the high-pressure stage. In addition, this paper also discussed the HL and EHL squeeze film characteristics.


2007 ◽  
Vol 2007 ◽  
pp. 1-25
Author(s):  
M. P. Markakis

We establish an analytical method leading to a more general form of the exact solution of a nonlinear ODE of the second order due to Gambier. The treatment is based on the introduction and determination of a new function, by means of which the solution of the original equation is expressed. This treatment is applied to another nonlinear equation, subjected to the same general class as that of Gambier, by constructing step by step an appropriate analytical technique. The developed procedure yields a general exact closed form solution of this equation, valid for specific values of the parameters involved and containing two arbitrary (free) parameters evaluated by the relevant initial conditions. We finally verify this technique by applying it to two specific sets of parameter values of the equation under consideration.


2017 ◽  
Vol 8 (1-2) ◽  
pp. 90
Author(s):  
Babatunde Sunday Ogundare ◽  
Saheed O Akindeinde ◽  
Adebayo O Adewumi ◽  
Adebayo A Aderogba

In this article, a new analytical technique called Improved Parker-Sochacki Method (IPSM) for solving nonlinear Michaelis-Menten enzyme catalyzed reaction model is proposed. The global form of the solution for the concentrations of the substrate, enzyme and the enyzme-free product are obtained. Employing the Laplace-Pade resummation as a post processing technique on the computed series solution, the domain of convergence of the solution is greatly extended. The solution is therefore devoid of limited convergence interval that is typical of series solution of nonlinear differential equations.  The proposed method showed a significant improvement  over the conventional Parker-Sochacki Method (PSM). Furthermore, comparison of the results with numerically computed solutions elucidated the simplicity and accuracy of the proposed method.


This study obtains a closed-form solution for the discrete-time global quadratic hedging problem of Schweizer (1995) applied to vanilla European options under the geometric Gaussian random walk model for the underlying asset. This extends the work of Rémillard and Rubenthaler (2013), who obtained closed-form formulas for some components of the hedging problem solution. Coefficients embedded in the closed-form expression can be computed either directly or through a recursive algorithm. The author also presents a brief sensitivity analysis to determine the impact of the underlying asset drift and the hedging portfolio rebalancing frequency on the optimal hedging capital and the initial hedge ratio.


2010 ◽  
Vol 13 (06) ◽  
pp. 901-929 ◽  
Author(s):  
FERNANDA D'IPPOLITI ◽  
ENRICO MORETTO ◽  
SARA PASQUALI ◽  
BARBARA TRIVELLATO

A stochastic volatility jump-diffusion model for pricing derivatives with jumps in both spot return and volatility underlying dynamics is presented. This model admits, in the spirit of Heston, a closed-form solution for European-style options. The structure of the model is also suitable to explicitly obtain the fair delivery price for variance swaps. To evaluate derivatives whose value does not admit a closed-form expression, a methodology based on an "exact algorithm", in the sense that no discretization of equations is required, is developed and applied to barrier options. Goodness of pricing algorithm is tested using DJ Euro Stoxx 50 market data for European options. Finally, the algorithm is applied to compute prices and Greeks for barrier options and to determine the fair delivery prices for variance swaps.


Author(s):  
B S Yilbas ◽  
M Sami ◽  
A Al-Farayedhi

The laser processing of engineering materials requires an in-depth analysis of the applicable heating mechanism. The modelling of the laser heating process offers improved understanding of the machining mechanism. In the present study, a closed-form solution for a step input laser heating pulse is obtained and a numerical scheme solving a three-dimensional heat transfer equation is introduced. The numerical solution provides a comparison of temperature profiles with those obtained from the analytical approach. To validate the analytical and numerical solutions, an experiment is conducted to measure the surface temperature and evaporating front velocity during the Nd—YAG laser heating process. It is found that the temperature profiles resulting from both theory and experiment are in a good agreement. However, a small discrepancy in temperatures at the upper end of the profiles occurs. This may be due to the assumptions made in both the numerical and the analytical approaches. In addition, the equilibrium time, based on the energy balance among the internal energy gain, conduction losses and latent heat of fusion, is introduced.


2011 ◽  
Vol 78 (3) ◽  
Author(s):  
Xiaoqing Jin ◽  
Leon M. Keer ◽  
Qian Wang

From the analytical formulation developed by Ju and Sun [1999, “A Novel Formulation for the Exterior-Point Eshelby’s Tensor of an Ellipsoidal Inclusion,” ASME Trans. J. Appl. Mech., 66, pp. 570–574], it is seen that the exterior point Eshelby tensor for an ellipsoid inclusion possesses a minor symmetry. The solution to an elliptic cylindrical inclusion may be obtained as a special case of Ju and Sun’s solution. It is noted that the closed-form expression for the exterior-point Eshelby tensor by Kim and Lee [2010, “Closed Form Solution of the Exterior-Point Eshelby Tensor for an Elliptic Cylindrical Inclusion,” ASME Trans. J. Appl. Mech., 77, p. 024503] violates the minor symmetry. Due to the importance of the solution in micromechanics-based analysis and plane-elasticity-related problems, in this work, the explicit analytical solution is rederived. Furthermore, the exterior-point Eshelby tensor is used to derive the explicit closed-form solution for the elastic field outside the inclusion, as well as to quantify the elastic field discontinuity across the interface. A benchmark problem is used to demonstrate a valuable application of the present solution in implementing the equivalent inclusion method.


2019 ◽  
Vol 24 (10) ◽  
pp. 3231-3253 ◽  
Author(s):  
Marco Salviato ◽  
Sean E Phenisee

The new generation of manufacturing technologies such as additive manufacturing and automated fiber placement has enabled the development of material systems with desired functional and mechanical properties via particular designs of inhomogeneities and their mesostructural arrangement. Among these systems, particularly interesting are materials exhibiting curvilinear transverse isotropy (CTI), in which the inhomogeneities take the form of continuous fibers following curvilinear paths designed to, for example, optimize the electric and thermal conductivity, and the mechanical performance of the system. In this context, the present work proposes a general framework for the exact, closed-form solution of electrostatic problems in materials featuring CTI. First, the general equations for the fiber paths that optimize the electric conductivity are derived, leveraging a proper conformal coordinate system. Then, the continuity equation for the curvilinear transversely isotropic system is derived in terms of electrostatic potential. A general exact, closed-form expression for the electrostatic potential and electric field is derived and validated by finite element analysis. Finally, potential avenues for the development of materials with superior electric conductivity and damage sensing capabilities are discussed.


Sign in / Sign up

Export Citation Format

Share Document