scholarly journals The Variable Angle Hip Fracture Nail Relative to the Gamma 3: A Finite Element Analysis Illustrating the Same Stiffness and Fatigue Characteristics

2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Amir Matityahu ◽  
Andrew H. Schmidt ◽  
Alan Grantz ◽  
Ben Clawson ◽  
Meir Marmor ◽  
...  

Ten percent of the 250,000 proximal femur fractures that occur in the United States each year are malreduced into a varus position after treatment. Currently, there is no cephalomedullary nail available that allows the physician to dynamically change the lag-screw-to-nail angle. The Variable Angle Nail (VAN) was designed to allow movement of the lag screw relative to the shaft of the nail. This study compared the characteristics of the VAN to the Gamma 3 nail via finite element analysis (FEA) in stiffness and fatigue. The results of the FEA model with the same loading parameters showed the Gamma 3 and the VAN with lag-screw-to-nail angle of 120° to have essentially the same stiffness values ranging from 350 to 382 N/mm. The VAN with lag-screw-to-nail angles of 120°, 130°, and 140° should be able to withstand more than 1,000,000 cycles from 1,400 N to 1,500 N loading of the tip of the lag screw. The Gamma 3 should be able to last more than 1,000,000 cycles at 1,400 N. In summary, the VAN is superior or equivalent in stiffness and fatigue when compared to the Gamma 3 using FEA.

1998 ◽  
Vol 26 (1) ◽  
pp. 51-62
Author(s):  
A. L. A. Costa ◽  
M. Natalini ◽  
M. F. Inglese ◽  
O. A. M. Xavier

Abstract Because the structural integrity of brake systems and tires can be related to the temperature, this work proposes a transient heat transfer finite element analysis (FEA) model to study the overheating in drum brake systems used in trucks and urban buses. To understand the mechanics of overheating, some constructive variants have been modeled regarding the assemblage: brake, rims, and tires. The model simultaneously studies the thermal energy generated by brakes and tires and how the heat is transferred and dissipated by conduction, convection, and radiation. The simulated FEA data and the experimental temperature profiles measured with thermocouples have been compared giving good correlation.


2015 ◽  
Vol 741 ◽  
pp. 223-226
Author(s):  
Hai Bin Li

The performance of automobile drive axle housing structure affects whether the automobile design is successful or not. In this paper, the author built the FEA model of a automobile drive axle housing with shell elements by ANSYS. In order to building the optimization model of the automobile drive axle housing, the author studied the static and dynamic performance of it’s structure based on the model.


2002 ◽  
Vol 124 (2) ◽  
pp. 189-199 ◽  
Author(s):  
Y. B. Guo ◽  
C. R. Liu

A practical explicit 3D finite element analysis model has been developed and implemented to analyze turning hardened AISI 52100 steels using a PCBN cutting tool. The finite element analysis incorporated the thermo-elastic-plastic properties of the work material in machining. An improved friction model has been proposed to characterize tool-chip interaction with the friction coefficient and shear flow stresses determined by force calibration and material tests, respectively. A geometric model has been established to simulate a 3D turning. FEA Model predictions have reasonable accuracy for chip geometry, forces, residual stresses, and cutting temperatures. FEA model sensitivity analysis indicates that the prediction is consistent using a suitable magnitude of material failure strain for chip separation, the simulation gives reasonable results using the experimentally determined material properties, the proposed friction model is valid and the sticking region on the tool-chip interface is a dominant factor of model predictions.


1999 ◽  
Author(s):  
Richard B. Englund ◽  
David H. Johnson ◽  
Shannon K. Sweeney

Abstract A finite element analysis (FEA) model of the interaction of a nut and bolt was used to investigate the effects of sliding, friction, and yielding in a bolted connection. The finite element model was developed as a two-dimensional, axisymmetric system, which allowed the study of axial and radial loading and displacements. This model did not permit evaluation of hoop or torsional effects such as tightening or the helical thread form. Results presented in this paper include the distribution of load between consecutive threads, the relative sliding along thread faces, and the stress distribution and regions of yielding in the model. Finally, a comparison to previous, linear analysis work and to published experimental data is made to conclude the paper.


SIMULATION ◽  
2020 ◽  
pp. 003754972097278
Author(s):  
Tigran A Muradyan ◽  
Nshan A Muradyan ◽  
Sergey V Verlinski ◽  
Anna Yu Poghosyan

Connecting implants with teeth is sometimes considered for the support of prostheses in partial edentulism, especially in periodontally compromised and surgical treated patients. The aim of this study is the presentation of a model of tooth–implant nonrigid fixation in comparison with implant–implant and implant–tooth rigid fixation by three-dimensional (3D) finite element analysis. As a model, a situation with a mandibular second premolar and two molars edentulism was selected. Two implantation options with three prosthetics designs were considered. The comparative analysis of stress and strain distribution values under vertical 100 and 200 N loading was performed. The highest peri-implant crestal bone stress distribution was observed in the model with the implant–tooth rigid fixation with 200 N vertical loading with results of 136.56 MPa. In the model with implant–tooth nonrigid fixation, the maximum strain value was observed in the tooth–connector zone and the stress distribution was higher in the connectors and the prosthesis pontic zone, with a maximal value of 27.77 MPa. The design of a tooth–implant fixed denture could be suggested as a method of choice for rehabilitation of the posterior edentulous segment in cases when only one distal implant could be installed. Further clinical research is required to obtain reliable validation data for the proposed method.


2016 ◽  
Vol 707 ◽  
pp. 154-158
Author(s):  
Somsak Limwongsakorn ◽  
Wasawat Nakkiew ◽  
Adirek Baisukhan

The proposed finite element analysis (FEA) model was constructed using FEA simulation software, ANSYS program, for determining effects of corrosion fatigue (CF) from TIG welding process on AISI 304 stainless steel workpiece. The FEA model of TIG welding process was developed from Goldak's double ellipsoid moving heat source. In this paper, the residual stress results obtained from the FEA model were consistent with results from the X-ray diffraction (XRD) method. The residual stress was further used as an input in the next step of corrosion fatigue analysis. The predictive CF life result obtained from the FEA CF model were consistent with the value obtained from stress-life curve (S-N curve) from the reference literaturature. Therefore, the proposed FEA of CF model was then used for predicting the corrosion fatigue life on TIG welding workpiece, the results from the model showed the corrosion fatigue life of 1,794 cycles with testing condition of the frequency ( f ) = 0.1 Hz and the equivalent load of 67.5 kN (equal to 150 MPa) with R = 0.25.


2014 ◽  
Vol 543-547 ◽  
pp. 3-6
Author(s):  
Jie Min ◽  
Hai Sheng Wang ◽  
De Wei Guo ◽  
Wen Bin Zhang

DEFORM is a software used for FEA (Finite Element Analysis) simulation. By using this software, I take a research on the procedure when a steel billet with defect of artificial loosening is drawn out in a simulated environment. Then I build a FEA model about the loosening and compaction of a large-sized rotor and stimulate the procedure in accordance with current craft card involving rotor forging. Finally, I get a result: the relative density of the loose area reaches up to 85% after the first drawing-out process (note: forging ratio 1.47). After simulating the procedure of chamfering on a billet which has been already drawn out, I found that chamfering had little substantial impact on the its loosening and compaction.


2012 ◽  
Vol 271-272 ◽  
pp. 927-931
Author(s):  
Ying Wu ◽  
Jun Li ◽  
Wen Hao Lu ◽  
Shi Yuan Xiong

The study on power steering gear is less than other auto parts at home or abroad. Compared with developed countries, the independent design and manufacture of power steering starts late, and lacks practical and effective evaluation standards. The combination of the theoretical analysis, numerical calculation and experimental verification is the key technology to optimize the design or test to evaluate the power steering gear’s function and performance. In this paper, the power steering gear’s finite element analysis(FEA) model was built to analyse the fatigue stress and fatigue life of the power steering gear’s components, such as housing, input shaft and output shaft. and the fatigue test of the power steering gear was also designed and implemented. Research showed that, the power steering gear fatigue properties of FEA and reliability test have the same results. The total damage of 4 A-B-C event cycles is less than 1, the steering gear system is judged safe after 4 event cycles per design requirements. Each component of the power steering gear has different maximum average stress. The stress of the sector shaft, the piston and the screws is very close to the yield stress, which is much larger than the other components, and needed to be treated with caution The maximum stresses of the gear housing are a little over the yield strengths at the stress of 6,118 lbs, which is more dangerous than the other components, and great attention should be paid to it.


Sign in / Sign up

Export Citation Format

Share Document