scholarly journals Glutamine and Alanyl-Glutamine Increase RhoA Expression and ReduceClostridium difficileToxin-A-Induced Intestinal Epithelial Cell Damage

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Ana A. Q. A. Santos ◽  
Manuel B. Braga-Neto ◽  
Marcelo R. Oliveira ◽  
Rosemeire S. Freire ◽  
Eduardo B. Barros ◽  
...  

Clostridium difficileis a major cause of antibiotic-associated colitis and is associated with significant morbidity and mortality. Glutamine (Gln) is a major fuel for the intestinal cell population. Alanyl-glutamine (Ala-Gln) is a dipeptide that is highly soluble and well tolerated. IEC-6 cells were used in thein vitroexperiments. Cell morphology was evaluated by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Cell proliferation was assessed by WST-1 and Ki-67 and apoptosis was assessed by TUNEL. Cytoskeleton was evaluated by immunofluorescence for RhoA and F-actin. RhoA was quantified by immunoblotting. TcdA induced cell shrinkage as observed by AFM, SEM, and fluorescent microscopy. Additionally, collapse of the F-actin cytoskeleton was demonstrated by immunofluorescence. TcdA decreased cell volume and area and increased cell height by 79%, 66.2%, and 58.9%, respectively. Following TcdA treatment, Ala-Gln and Gln supplementation, significantly increased RhoA by 65.5% and 89.7%, respectively at 24 h. Ala-Gln supplementation increased cell proliferation by 137.5% at 24 h and decreased cell apoptosis by 61.4% at 24 h following TcdA treatment. In conclusion, TcdA altered intestinal cell morphology and cytoskeleton organization, decreased cell proliferation, and increased cell apoptosis. Ala-Gln and Gln supplementation reduced intestinal epithelial cell damage and increased RhoA expression.

2015 ◽  
Vol 226 (3) ◽  
pp. 135-143 ◽  
Author(s):  
Tatiana Dorfman ◽  
Yulia Pollak ◽  
Rima Sohotnik ◽  
Arnold G Coran ◽  
Jacob Bejar ◽  
...  

The Wnt/β-catenin signaling cascade is implicated in the control of stem cell activity, cell proliferation, and cell survival of the gastrointestinal epithelium. Recent evidence indicates that the Wnt/β-catenin pathway is activated under diabetic conditions. The purpose of this study was to evaluate the role of Wnt/β-catenin signaling during diabetes-induced enteropathy in a rat model. Male rats were divided into three groups: control rats received injections of vehicle; diabetic rats received injections of one dose of streptozotocin (STZ); and diabetic–insulin rats received injections of STZ and were treated with insulin given subcutaneously at a dose of 1 U/kg twice daily. Rats were killed on day 7. Wnt/β-catenin-related genes and expression of proteins was determined using real-time PCR, western blotting, and immunohistochemistry. Among 13 genes identified by real-time PCR, seven genes were upregulated in diabetic rats compared with control animals including the target genes c-Myc and Tcf4. Diabetic rats also showed a significant increase in β-catenin protein compared with control animals. Treatment of diabetic rats attenuated the stimulating effect of diabetes on intestinal cell proliferation and Wnt/β-catenin signaling. In conclusion, enhanced intestinal epithelial cell proliferation in diabetic rats correlates with β-catenin accumulation.


2016 ◽  
Vol 310 (2) ◽  
pp. G81-G92 ◽  
Author(s):  
Avafia Y. Dossa ◽  
Oswaldo Escobar ◽  
Jamie Golden ◽  
Mark R. Frey ◽  
Henri R. Ford ◽  
...  

Bile acids (BAs) are synthesized in the liver and secreted into the intestine. In the lumen, enteric bacteria metabolize BAs from conjugated, primary forms into more toxic unconjugated, secondary metabolites. Secondary BAs can be injurious to the intestine and may contribute to disease. The epidermal growth factor receptor (EGFR) and the nuclear farnesoid X receptor (FXR) are known to interact with BAs. In this study we examined the effects of BAs on intestinal epithelial cell proliferation and investigated the possible roles for EGFR and FXR in these effects. We report that taurine-conjugated cholic acid (TCA) induced proliferation, while its unconjugated secondary counterpart deoxycholic acid (DCA) inhibited proliferation. TCA stimulated phosphorylation of Src, EGFR, and ERK 1/2. Pharmacological blockade of any of these pathways or genetic ablation of EGFR abrogated TCA-stimulated proliferation. Interestingly, Src or EGFR inhibitors eliminated TCA-induced phosphorylation of both molecules, suggesting that their activation is interdependent. In contrast to TCA, DCA exposure diminished EGFR phosphorylation, and pharmacological or siRNA blockade of FXR abolished DCA-induced inhibition of proliferation. Taken together, these results suggest that TCA induces intestinal cell proliferation via Src, EGFR, and ERK activation. In contrast, DCA inhibits proliferation via an FXR-dependent mechanism that may include downstream inactivation of the EGFR/Src/ERK pathway. Since elevated secondary BA levels are the result of specific bacterial modification, this may provide a mechanism through which an altered microbiota contributes to normal or abnormal intestinal epithelial cell proliferation.


1999 ◽  
Vol 80 (10) ◽  
pp. 1550-1557 ◽  
Author(s):  
C Booth ◽  
D F Hargreaves ◽  
J A Hadfield ◽  
A T McGown ◽  
C S Potten

2003 ◽  
Vol 100 (14) ◽  
pp. 8366-8371 ◽  
Author(s):  
Marco Marini ◽  
Giorgos Bamias ◽  
Jesús Rivera-Nieves ◽  
Christopher A. Moskaluk ◽  
Sharon B. Hoang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document