Precoding for Multiuser MIMO

Author(s):  
Elsadig Saeid ◽  
Varun Jeoti ◽  
Brahim Belhaouari Samir

Future Wireless Networks are expected to adopt multi-user multiple input multiple output (MU-MIMO) systems whose performance is maximized by making use of precoding at the transmitter. This chapter describes the recent advances in precoding design for MU-MIMO and introduces a new technique to improve the precoder performance. Without claiming to be comprehensive, the chapter gives deep introduction on basic MIMO techniques covering the basics of single user multiple input multiple output (SU-MIMO) links, its capacity, various transmission strategies, SU-MIMO link precoding, and MIMO receiver structures. After the introduction, MU-MIMO system model is defined and maximum achievable rate regions for both MU-MIMO broadcast and MU-MIMO multiple access channels are explained. It is followed by critical literature review on linear precoding design for MU-MIMO broadcast channel. This paves the way for introducing an improved technique of precoding design that is followed by its performance evaluation.

Author(s):  
Zahra Amirifar ◽  
Jamshid Abouei

<p>The massive multiple-input multiple-output (MIMO) technology has been applied innew generation wireless systems due to growing demand for reliability and high datarate. Hybrid beamforming architectures in both receiver and transmitter, includinganalog and digital precoders, play a significant role in 5G communication networksand have recently attracted a lot of attention. In this paper, we propose a simple andeffective beamforming precoder approach for mmWave massive MIMO systems. Wefirst solve an optimization problem by a simplification subject, and in the second step,we use the covariance channel matrixfCk=Cov(Hk)andBk=HkHHkinstead of chan-nel matrixHk. Simulation results verify that the proposed scheme can enjoy a highersum rate and energy efficiency than previous methods such as spatially sparse method,analog method, and conventional hybrid method even with inaccurate Channel StateInformation (CSI). Percentage difference of the achievable rate ofCk=Cov(Hk)andBk=HkHHkschemes compared to conventional methods are 2.51% and 48.94%, re-spectively.</p>


Author(s):  
Zhendong Zhou ◽  
Branka Vucetic

This chapter introduces the adaptive modulation and coding (AMC) as a practical means of approaching the high spectral efficiency theoretically promised by multiple-input multiple-output (MIMO) systems. It investigates the AMC MIMO systems in a generic framework and gives a quantitative analysis of the multiplexing gain of these systems. The effects of imperfect channel state information (CSI) on the AMC MIMO systems are pointed out. In the context of imperfect CSI, a design of robust near-capacity AMC MIMO system is proposed and its good performance is verified by simulation results. The proposed adaptive system is compared with the non-adaptive MIMO system, which shows the adaptive system approaches the channel capacity closer.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6213
Author(s):  
Muhammad Irshad Zahoor ◽  
Zheng Dou ◽  
Syed Bilal Hussain Shah ◽  
Imran Ullah Khan ◽  
Sikander Ayub ◽  
...  

Due to large spectral efficiency and low power consumption, the Massive Multiple-Input-Multiple-Output (MIMO) became a promising technology for the 5G system. However, pilot contamination (PC) limits the performance of massive MIMO systems. Therefore, two pilot scheduling schemes (i.e., Fractional Pilot Reuse (FPR) and asynchronous fractional pilot scheduling scheme (AFPS)) are proposed, which significantly mitigated the PC in the uplink time division duplex (TDD) massive MIMO system. In the FPR scheme, all the users are distributed into the central cell and edge cell users depending upon their signal to interference plus noise ratio (SINR). Further, the capacity of central and edge users is derived in terms of sum-rate, and the ideal number of the pilot is calculated which significantly maximized the sum rate. In the proposed AFPS scheme, the users are grouped into central users and edge users depending upon the interference they receive. The central users are assigned the same set of pilots because these users are less affected by interference, while the edge users are assigned the orthogonal pilots because these users are severely affected by interference. Consequently, the pilot overhead is reduced and inter-cell interference (ICI) is minimized. Further, results verify that the proposed schemes outperform the previous proposed traditional schemes, in terms of improved sum rates.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Chaowei Wang ◽  
Weidong Wang ◽  
Cheng Wang ◽  
Shuai Wang ◽  
Yang Yu

Antenna selection has been regarded as an effective method to acquire the diversity benefits of multiple antennas while potentially reduce hardware costs. This paper focuses on receive antenna selection. According to the proportion between the numbers of total receive antennas and selected antennas and the influence of each antenna on system capacity, we propose a fast adaptive antenna selection algorithm for wireless multiple-input multiple-output (MIMO) systems. Mathematical analysis and numerical results show that our algorithm significantly reduces the computational complexity and memory requirement and achieves considerable system capacity gain compared with the optimal selection technique in the same time.


Author(s):  
Ashu Taneja ◽  
Nitin Saluja

Background: The paper considers the wireless system with large number of users (more than 50 users) and each user is assigned large number of antennas (around 200) at the Base Station (BS). Objective: The challenges associated with the defined system are increased power consumption and high complexity of associated circuitry. The antenna selection is introduced to combat these problems while the usage of linear precoding reduces computational complexity. The literature suggests number of antenna selection techniques based on statistical properties of signal. However, each antenna selection technique suits well to specific number of users. Methods: In this paper, the random antenna selection is compared with norm-based antenna selection. It is analysed that the random antenna selection leads to inefficient spectral efficiency if the number of users are more than 50 in Multi-User Multiple-Input Multiple Output (MU-MIMO) system. Results: The paper proposes the optimization of Energy-Efficiency (EE) with random transmit antenna selection for large number of users in MU-MIMO systems. Conclusion: Also the computation leads to optimization of number of transmit antennas at the BS for energy efficiency. The proposed algorithm results in improvement of the energy efficiency by 27% for more than 50 users.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Z. Y. Shao ◽  
S. W. Cheung ◽  
T. I. Yuk

Multiple-input multiple-output (MIMO) system is considered to be one of the key technologies of LTE since it achieves requirements of high throughput and spectral efficiency. The semidefinite relaxation (SDR) detection for MIMO systems is an attractive alternative to the optimum maximum likelihood (ML) decoding because it is very computationally efficient. We propose a new SDR detector for 256-QAM MIMO system and compare its performance with two other SDR detectors, namely, BC-SDR detector and VA-SDR detector. The tightness and complexity of these three SDR detectors are analyzed. Both theoretical analysis and simulation results demonstrate that the proposed SDR can provide the best BLER performance among the three detectors, while the BC-SDR detector and the VA-SDR detector provide identical BLER performance. Moreover, the BC-SDR has the lowest computational complexity and the VA-SDR has the highest computational complexity, while the proposed SDR is in between.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 638
Author(s):  
Ashish Kumar Sarangi ◽  
Amrit Mukherjee ◽  
Amlan Datta

To achieve high capacity and high data rates is the main requirement for today’s generation. This paper studies about the performance and capacity comparison of MIMO and cooperative MIMO systems. The comparison of capacity between multiple- input- multiple- output (MIMO) and cooperative MIMO systems helps us to know that which system have better performance and better capacity. The simulation results shows that among SISO, SIMO, MISO and MIMO  system the capacity of MIMO will be better but in between MIMO and cooperative MIMO, Cooperative MIMO system have high capacity than MIMO systems.  


2019 ◽  
Vol 8 (3) ◽  
pp. 3272-3277

Multiple-Input-Multiple-Output (MIMO) system improves performance as well as the capacity of the wireless system. The use of large number of antennas in a MIMO system increases the hardware complexities and also its price. To overcome this, MIMO systems that activate single transmit antenna at a time, namely transmit antenna selection (TAS) is considered in this paper. Selection combining (SC) and Maximal ratio combining (MRC) are carried out at the receiver over    fading channels. Expressions for outage probability and average bit error rate (ABER) are derived considering TAS/SC as well as TAS/MRC MIMO systems. All the derived expressions are validated by Monte-Carlo simulation results.


2018 ◽  
Vol 218 ◽  
pp. 03009
Author(s):  
Desy Agustin ◽  
Nachwan Mufti Adriansyah ◽  
Muhsin

In today’s modern telecommunications systems, makes the number of studies and development of multiple antennas and multiple-input multiple-output (MIMO) systems to achieve high reliability and low complexity. One attractive approach to improve that performance is using technique transmit diversity which is spacetime block coding and receiver diversity i.e. zero forcing EVCM (ZF EVCM). Although some earlier MIMO standards were develop some space-time codes like (O-STBC)and (Q-OSTBC) to provide high reliability but they are limited able to achieve orthogonality. In this research will be proposed a MIMO system scheme which is an improvement of QOSTBC that used a transmission diversity technique. This improvement from QOSTBC is Twice QOSTBC uses a provision in two codeword matrices to be sent are arranged diagonally so as to have higher levels of orthogonality. In this case Twice QOSTBC highly structured (4x1) can be replaced as an equivalent EVCM channel H. The proposed Twice-QOSTBC’s results outperform other QOSTBC techniques with a difference around 3 dB for single-input multi-input (MISO) input configuration at 10-6 BER and receiver ZF EVCM has a very similar structure as the code matrix S of the underlying Twice QSTBC which can eliminates the system complexity.


Author(s):  
Yujiao He ◽  
Jianing Zhao ◽  
Lijuan Tao ◽  
Fuyu Hou ◽  
Wei Jia

This paper proposes an improved port modulation (PM) method which can be applied to the multiuser (MU) massive multiple-input multiple-output (MIMO) system. The precoding process of the improved PM can be divided into two parts: port precoding and MU precoding. The methods of the precoding and detection are provided and the performance of the proposed improved PM is simulated and analyzed. Simulation results show that the proposed improved PM system can achieve a satisfying bit error rate (BER) performance with a cutdown channel state information (CSI) feedback.


Sign in / Sign up

Export Citation Format

Share Document