scholarly journals Temperature Effects on the Crystallization and Coarsening of Nano-CeO2 Powders

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
H. F. Lopez ◽  
H. Mendoza

The effect of temperature on nano-CeO2 particle coarsening is investigated. The nanoceria powders were synthesized using the microemulsion method and then exposed to temperatures in the range of 373–1273 K. It was found that the nanoparticles exhibited a strong tendency to form agglomerates and through the application of ultrasound these agglomerates could be broken into smaller sizes. In addition average nanoparticle sizes were determined by powder X-ray diffraction (XRD). The outcome of this work indicates that the initial nano-CeO2 powders are amorphous in nature. Annealing promotes CeO2 crystallization and a slight shift in the (111) XRD intensity peaks corresponding to CeO2. Moreover, at temperatures below 773 K, grain growth in nano-CeO2 particles is rather slow. Apparently, mass transport through diffusional processes is not likely to occur as indicated by an estimated activation energy of 20 kJ/mol. At temperatures above 873 K, the measured activation energy shifted to 105 kJ/mol suggesting a possible transition to Ostwald-Ripening type mass transport mechanisms.

1990 ◽  
Vol 192 ◽  
Author(s):  
M.J.M. Pruppers ◽  
K.M.H. Maessen ◽  
F.H.P.M. Habraken ◽  
J. Bezemer ◽  
W.F. Van Der Weg

ABSTRACTPhosphorus, boron and compensation doped hydrogenated amorphous silicon films were deposited in a glow discharge at different substrate temperatures in the range 50–330°C. Gas phase doping levels were 1%. At the lower temperatures the hydrogen concentration in the B doped and compensated doped films is larger than in the P and undoped films. For higher deposition temperatures the H concentration of the B doped films appeared to be smaller than in the other materials. The difference in hydrogen content of the doped and undoped material, deposited at various temperatures, is considered as a function of the measured activation energy for conduction in these films. This difference varies in much the same way with the activation energy as the hydrogen content in films deposited at one substrate temperature, but with varying gas phase dopant levels. This represents strong evidence that, apart from the deposition temperature, the hydrogen concentration in glow discharge a-Si:H is determined by the position of the Fermi level.


2000 ◽  
Vol 5 (S1) ◽  
pp. 273-279 ◽  
Author(s):  
D.D. Koleske ◽  
A.E. Wickenden ◽  
R.L. Henry

GaN decomposition is studied as a function of pressure and temperature in mixed NH3 and H2 flows more characteristic of the MOVPE growth environment. As NH3 is substituted for the 6 SLM H2 flow, the GaN decomposition rate at 1000 °C is reduced from 1×1016 cm−2 s−1 (i.e. 9 monolayers/s) in pure H2 to a minimum of 1×1014 cm−2 s−1 at an NH3 density of 1×1019 cm−3. Further increases of the NH3 density above 1×1019 cm−3 result in an increase in the GaN decomposition rate. The measured activation energy, EA, for GaN decomposition in mixed H2 and NH3 flows is less than the EA measured in vacuum and in N2 environments. As the growth pressure is increased under the same H2 and NH3 flow conditions, the decomposition rate increases and the growth rate decreases with the addition of trimethylgallium to the flow. The decomposition in mixed NH3 and H2 and in pure H2 flows behave similarly, suggesting that surface H plays a similar role in the decomposition and growth of GaN in NH3.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ji-Hyun Hur

AbstractIt is well known that collective migrations of oxygen vacancies in oxide is the key principle of resistance change in oxide-based resistive memory (OxRAM). The practical usefulness of OxRAM mainly arises from the fact that these oxygen vacancy migrations take place at relatively low operating voltages. The activation energy of oxygen vacancy migration, which can be inferred from the operational voltage of an OxRAM, is much smaller compared to the experimentally measured activation energy of oxygen, and the underlying mechanism of the discrepancy has not been highlighted yet. We ask this fundamental question in this paper for tantalum oxide which is one of the most commonly employed oxides in OxRAMs and try the theoretical answer based on the first-principles calculations. From the results, it is proven that the exceptionally large mobility of oxygen vacancy expected by the switching model can be well explained by the exceptionally low activation barrier of positively charged oxygen vacancy within the two-dimensional substructure.


Sign in / Sign up

Export Citation Format

Share Document