scholarly journals Proximal Point Algorithms for Finding a Zero of a Finite Sum of Monotone Mappings in Banach Spaces

2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
H. Zegeye ◽  
N. Shahzad

We introduce an iterative process which converges strongly to a zero of a finite sum of monotone mappings under certain conditions. Applications to a convex minimization problem are included. Our theorems improve and unify most of the results that have been proved in this direction for this important class of nonlinear mappings.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
H. Zegeye ◽  
N. Shahzad

We prove a strong convergence theorem for a common fixed point of a finite family of right Bregman strongly nonexpansive mappings in the framework of real reflexive Banach spaces. Furthermore, we apply our method to approximate a common zero of a finite family of maximal monotone mappings and a solution of a finite family of convex feasibility problems in reflexive real Banach spaces. Our theorems complement some recent results that have been proved for this important class of nonlinear mappings.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Getahun Bekele Wega ◽  
Habtu Zegeye

Our purpose of this study is to construct an algorithm for finding a zero of the sum of two maximally monotone mappings in Hilbert spaces and discus its convergence. The assumption that one of the mappings is α-inverse strongly monotone is dispensed with. In addition, we give some applications to the minimization problem. Our method of proof is of independent interest. Finally, a numerical example which supports our main result is presented. Our theorems improve and unify most of the results that have been proved for this important class of nonlinear mappings.


2020 ◽  
Vol 53 (1) ◽  
pp. 152-166 ◽  
Author(s):  
Getahun B. Wega ◽  
Habtu Zegeye ◽  
Oganeditse A. Boikanyo

AbstractThe purpose of this article is to study the method of approximation for zeros of the sum of a finite family of maximally monotone mappings and prove strong convergence of the proposed approximation method under suitable conditions. The method of proof is of independent interest. In addition, we give some applications to the minimization problems and provide a numerical example which supports our main result. Our theorems improve and unify most of the results that have been proved for this important class of nonlinear mappings.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
H. Zegeye ◽  
N. Shahzad

We provide an iterative process which converges strongly to a common fixed point of finite family of asymptoticallyk-strict pseudocontractive mappings in Banach spaces. Our theorems improve and unify most of the results that have been proved for this important class of nonlinear operators.


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 156 ◽  
Author(s):  
Chanjuan Pan ◽  
Yuanheng Wang

In this article, we study a modified viscosity splitting method combined with inertial extrapolation for accretive operators in Banach spaces and then establish a strong convergence theorem for such iterations under some suitable assumptions on the sequences of parameters. As an application, we extend our main results to solve the convex minimization problem. Moreover, the numerical experiments are presented to support the feasibility and efficiency of the proposed method.


2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Xavier Udo-utun ◽  
M. Y. Balla ◽  
Z. U. Siddiqui

We extend the application of nearly contraction mapping principle introduced by Sahu (2005) for existence of fixed points of demicontinuous mappings to certain hemicontinuous nearly Lipschitzian nonlinear mappings in Banach spaces. We have applied certain results due to Sahu (2005) to obtain conditions for existence—and to introduce an asymptotic iterative process for construction—of fixed points of these hemicontractions with respect to a new auxiliary operator.


2016 ◽  
Vol 25 (1) ◽  
pp. 107-120
Author(s):  
T. M. M. SOW ◽  
◽  
C. DIOP ◽  
N. DJITTE ◽  
◽  
...  

For q > 1 and p > 1, let E be a 2-uniformly convex and q-uniformly smooth or p- uniformly convex and 2-uniformly smooth real Banach space and F : E → E∗, K : E∗ → E be bounded and strongly monotone maps with D(K) = R(F) = E∗. We construct a coupled iterative process and prove its strong convergence to a solution of the Hammerstein equation u + KF u = 0. Futhermore, our technique of proof is of independent of interest.


Sign in / Sign up

Export Citation Format

Share Document