scholarly journals Characterization of Oily and Non-Oily Natural Sediments in Palm Oil Mill Effluent

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Reem A. Alrawi ◽  
Nik Norulaini Nik Ab Rahman ◽  
Anees Ahmad ◽  
Norli Ismail ◽  
A. K. Mohd Omar

Palm oil is one of the many vegetable oils widely consumed around the world. The production of palm oil requires voluminous amount of water with the concurrent generation of large amount of wastewater known as palm oil mill effluent (POME). POME is a mixture of water, oil, and natural sediments (solid particles and fibres).There is a dearth of information on the physical properties of these POME sediments. This study intends to distinguish the physical properties of oily and non-oily POME sediments which include sediment size, particle size distribution (PSD), sediment shape, sediment surface morphology, and sediment density. These characterizations are important for future researches because these properties have significant effects on the settling process that occurs either under natural gravity or by coagulations. It was found that the oily and non-oily POME sediments have different sizes with nonspherical irregular shapes, and because of that, the aspect ratio (AR) and circularity shape factors were adopted to describe the shapes of these sediments. The results also indicate that the density of oily POME sediment decreases as the sediment size increases.

2021 ◽  
Vol 945 (1) ◽  
pp. 012042
Author(s):  
Y M Tang ◽  
W Y Wong ◽  
K T Tan ◽  
L P Wong

Abstract Palm oil is the planet’s most exploited vegetable oil. However, its extensive commercialization has resulted in massive waste, particularly palm oil mill effluent (POME), contributing to severe environmental pollution. POME has a high concentration of oil and grease (O&G) with the mean value of 4,340 mg/L, exceeding the standard discharge limit of 50 mg/L. Hence, the recovery of oil content in POME is crucial as it could be a key material in biodiesel production. The oil droplets in POME exist in two phases: floating in the supernatant and suspended in the solids. During the solvent extraction process, the oil adsorbed by the solid particles is not entirely recovered. Thus, ultrasonication-based process intensification is introduced. Ultrasonication can break apart the solid particles and release the oil content using the principle of sound waves, thereby it will eventually increase the yield of oil recovery from POME. Although some studies were done on oil extraction from POME, the use of ultrasonication technique to enhance the extraction of oil from POME has never been done. The current research work is to investigate the feasibility of using ultrasonication technique to enhance the oil recovery from POME and compare it to a non-ultrasonicated POME. Overall, this research discovered that using ultrasonication as a pre-treatment would improve oil recovery yield from POME by 39.17% as compared to non-ultrasonicated sample under the optimum ultrasonication conditions of 30% amplitude and 30 seconds duration.


2018 ◽  
Author(s):  
Ika Kusuma Nugraheni ◽  
Nuryati Nuryati ◽  
Anggun Angkasa B. Persada ◽  
Triyono Triyono ◽  
Wega Trisunaryanti

2014 ◽  
Vol 70 (2) ◽  
Author(s):  
Nazatul Shima Azmi ◽  
Khairul Faezah Md. Yunos

Palm oil mill effluent (POME) in palm oil industry has become a big issue of environmental pollution to be solved urgently and critically. This wastewater consists of water, oil, and natural sediments. Hence, in this study, the work was carried out to investigate ultrafiltration process feasibility for treating palm oil mill effluent. Palm kernel shell bioactivated carbon (PKS-AC) adsorbent was used in adsorption treatment (pre-treatment) was used to reduced solid particles in POME. For adsorption treatment, POME was stirred with 0.20 g/L of PKS-AC at 39.94 minute and sediment for one hour. Membrane separation was subsequently applied to further treat the pre-treated POME. In this study, the permeate flux was found to be dependent to pressure applied, solution pH and stirring speed. An optium conditions was achieved at pressure 2 bar, with solution pH 8 using stirring speed 600 rpm. Considerable amount of POME pollutant is also reduced by used membrane for TS, DS, SS, BOD5, COD and turbidity were 625.32 mg/L, 445.32 mg/L, 180 mg/L, 1296 mg/L, 541.76 mg/L, and 16.20 NTU respectively. Thus, this result show that the pollutant in POME was reduced significantly using this technique.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 566
Author(s):  
Ruwaida Abdul Wahid ◽  
Wei Lun Ang ◽  
Abdul Wahab Mohammad ◽  
Daniel James Johnson ◽  
Nidal Hilal

Fertilizer-drawn forward osmosis (FDFO) is a potential alternative to recover and reuse water and nutrients from agricultural wastewater, such as palm oil mill effluent that consists of 95% water and is rich in nutrients. This study investigated the potential of commercial fertilizers as draw solution (DS) in FDFO to treat anaerobic palm oil mill effluent (An-POME). The process parameters affecting FO were studied and optimized, which were then applied to fertilizer selection based on FO performance and fouling propensity. Six commonly used fertilizers were screened and assessed in terms of pure water flux (Jw) and reverse salt flux (JS). Ammonium sulfate ((NH4)2SO4), mono-ammonium phosphate (MAP), and potassium chloride (KCl) were further evaluated with An-POME. MAP showed the best performance against An-POME, with a high average water flux, low flux decline, the highest performance ratio (PR), and highest water recovery of 5.9% for a 4-h operation. In a 24-h fouling run, the average flux decline and water recovered were 84% and 15%, respectively. Both hydraulic flushing and osmotic backwashing cleaning were able to effectively restore the water flux. The results demonstrated that FDFO using commercial fertilizers has the potential for the treatment of An-POME for water recovery. Nevertheless, further investigation is needed to address challenges such as JS and the dilution factor of DS for direct use of fertigation.


Sign in / Sign up

Export Citation Format

Share Document