scholarly journals Analysis of the Degradation of MOSFETs in Switching Mode Power Supply by Characterizing Source Oscillator Signals

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Xueyan Zheng ◽  
Lifeng Wu ◽  
Yong Guan ◽  
Xiaojuan Li

Switching Mode Power Supply (SMPS) has been widely applied in aeronautics, nuclear power, high-speed railways, and other areas related to national strategy and security. The degradation of MOSFET occupies a dominant position in the key factors affecting the reliability of SMPS. MOSFETs are used as low-voltage switches to regulate the DC voltage in SMPS. The studies have shown that die-attach degradation leads to an increase in on-state resistance due to its dependence on junction temperature. On-state resistance is the key indicator of the health of MOSFETs. In this paper, an online real-time method is presented for predicting the degradation of MOSFETs. First, the relationship between an oscillator signal of source and on-state resistance is introduced. Because oscillator signals change when they age, a feature is proposed to capture these changes and use them as indicators of the state of health of MOSFETs. A platform for testing characterizations is then established to monitor oscillator signals of source. Changes in oscillator signal measurement were observed with aged on-state resistance as a result of die-attach degradation. The experimental results demonstrate that the method is efficient. This study will enable a method to predict the failure of MOSFETs to be developed.

Author(s):  
Avinash Sukadeo Pawar

As the technology moving towards lower voltage for high stability and accurate performance. We design low voltage current mirror using IGFET, FDSOI, CNTFET.These transistor moving towards low-voltage high-speed performance. Here in this paper, we have design low voltage current mirror for Accurate duplication of current. To obtain accurate duplication of current we verify the performance of low voltage current mirror on FDSOI and CNTFET Transistor having 32nm technology.The circuit is simulated with 32nm technology for FDSOI and CNFET. They operate at lower power supply than IGFET. The simulation results show the improvement in knee voltage 1.7v and 1.3v for the current mirror.


Sign in / Sign up

Export Citation Format

Share Document