scholarly journals Adaptive Sliding Mode Robust Control for Virtual Compound-Axis Servo System

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yan Ren ◽  
Zhenghua Liu ◽  
Le Chang ◽  
Nuan Wen

A structure mode of virtual compound-axis servo system is proposed to improve the tracking accuracy of the ordinary optoelectric tracking platform. It is based on the structure and principles of compound-axis servo system. A hybrid position control scheme combining the PD controller and feed-forward controller is used in subsystem to track the tracking error of the main system. This paper analyzes the influences of the equivalent disturbance in main system and proposes an adaptive sliding mode robust control method based on the improved disturbance observer. The sliding mode technique helps this disturbance observer to deal with the uncompensated disturbance in high frequency by making use of the rapid switching control value, which is based on the subtle error of disturbance estimation. Besides, the high-frequency chattering is alleviated effectively in this proposal. The effectiveness of the proposal is confirmed by experiments on optoelectric tracking platform.

2013 ◽  
Vol 419 ◽  
pp. 713-717
Author(s):  
Xi Mei Zhao ◽  
Ming Ming Jiang ◽  
Hong Yi Li ◽  
Hao Liu

For direct drive XY table servo system, position control is designed. Considering the error which is caused by the disturbance of the system, friction factor and so on. The control method combing the zero phase error tracking controller (ZPETC) with the disturbance observer (DOB) is adopted. The system tracking error is reduced by adopting ZPETC, and through influences of disturbance to the system is diminished by the disturbance observer. Thus the tracking accuracy and robustness of the system are improved. Simulation results show that this control scheme is effective. It can obviously improve the accuracy of the system.


2020 ◽  
Vol 10 (14) ◽  
pp. 4779 ◽  
Author(s):  
Cheng Lu ◽  
Liang Hua ◽  
Xinsong Zhang ◽  
Huiming Wang ◽  
Yunxiang Guo

This paper investigates one kind of high performance control methods for Micro-Electro-Mechanical-System (MEMS) gyroscopes using adaptive sliding mode control (ASMC) scheme with prescribed performance. Prescribed performance control (PPC) method is combined with conventional ASMC method to provide quantitative analysis of gyroscope tracking error performances in terms of specified tracking error bound and specified error convergence rate. The new derived adaptive prescribed performance sliding mode control (APPSMC) can maintain a satisfactory control performance which guarantees system tracking error, at any time, to be within a predefined error bound and the error convergences faster than the error bound. Besides, adaptive control (AC) technique is integrated with PPC to online tune controller parameters, which will converge to their true values at last. The stability of the control system is proved in the Lyapunov stability framework and simulation results on a Z-axis MEMS gyroscope is conducted to validate the effectiveness of the proposed control approach.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Guangshi Li

In this paper, an adaptive sliding mode control method based on neural networks is presented for a class of manipulator systems. The main characteristic of the discussed system is that the output variable is required to keep within a constraint set. In order to ensure that the system output meets the time-varying constraint condition, the asymmetric barrier Lyapunov function is selected in the design process. According to Lyapunov stability theory, the stability of the closed-loop system is analyzed. It is demonstrated that all signals in the resulted system are bounded, the tracking error converges to a small compact set, and the system output limits in its constrained set. Finally, the simulation example is used to show the effectiveness of the presented control strategy.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Gangfeng Yan

Purpose The purpose of this paper is to achieve high-precision sliding mode control without chattering; the control parameters are easy to adjust, and the entire controller is easy to use in engineering practice. Design/methodology/approach Using double sliding mode surfaces, the gain of the control signal can be adjusted adaptively according to the error signal. A kind of sliding mode controller without chattering is designed and applied to the control of ultrasonic motors. Findings The results show that for a position signal with a tracking amplitude of 35 mm, the traditional sliding mode control method has a maximum tracking error of 0.3326 mm under the premise of small chattering; the boundary layer sliding mode control method has a maximum tracking error of 0.3927 mm without chattering, and the maximum tracking error of continuous switching adaptive sliding mode control is 0.1589 mm, and there is no chattering. Under the same control parameters, after adding a load of 0.5 kg, the maximum tracking errors of the traditional sliding mode control method, the boundary layer sliding mode control method and the continuous switching adaptive sliding mode control are 0.4292 mm, 0.5111 mm and 0.1848 mm, respectively. Originality/value The proposed method not only switches continuously, but also the amplitude of the switching signal is adaptive, while maintaining the robustness of the conventional sliding mode control method, which has strong engineering application value.


2021 ◽  
Vol 2087 (1) ◽  
pp. 012056
Author(s):  
Dechun Zhao ◽  
Yansong Song ◽  
Yang Liu ◽  
Baishuo Zhang ◽  
Tianci Liu

Abstract In order to solve the control problem of the tip-tilt mirror under the unknown disturbance, a nonlinear disturbance observer with adaptive ability based on the sliding mode control is designed.Firstly, the sliding mode control method of the tip-tilt mirror system is established with Lyapunov functions. Secondly, an adaptive nonlinear disturbance observer is developed on a basis of observer model. Finally, the proposed sliding mode control method is combined with a nonlinear observer with adaptive capability to achieve the goal of improving the control accuracy of the system, while also reducing the chattering caused by the system. The experiment proves that this method is achievable. The experimental results show that the tracking error of the azimuth axis is reduced from 1.637μrad to 1.083μrad, and the accuracy is improved by about 51.2%. The tracking error of the pitch axis is reduced from 1.966μrad to 1.614μrad, and the accuracy is improved by about 21.8%. This method can greatly weaken the inherent chattering and external disturbance of the system, and improve the stability of the tip-tilt mirror system.


Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 14
Author(s):  
Zhipeng Huang ◽  
Yuepeng Xu ◽  
Wang Ren ◽  
Chengwei Fu ◽  
Ruikang Cao ◽  
...  

This paper takes the position control performance of pump-controlled hydraulic presses as the research object. The control methods are designed respectively for the two motion stages of rapid descent and slow descent of hydraulic presses in order to improve the control performance of the system. First of all, the accuracy model of the pump-controlled hydraulic presses position servo system (the pump-controlled hydraulic presses position servo system, which is called PCHPS) and its MATLAB/Simulink simulation platform are established. Based on the theoretical analysis and experimental data, the interference factors affecting the tracking accuracy and positioning accuracy of the PCHPS are analyzed. Then, an adaptive integral robust control (the adaptive integral robust control, which is called AIRC) for PCHPS is designed to reduce the influence of nonlinear factors on the system, and the effectiveness of the controller is verified by simulation. Finally, the position control experiment of PCHPS is designed, and the experimental results show that the AIRC can effectively reduce nonlinear factors such as unknown interference in the slow-down stage of the system. The positioning accuracy is raised to within 0.008 mm, which improves the process level of the hydraulic presses.


Author(s):  
Jicheng Liu ◽  
Ju Jiang ◽  
Chaojun Yu ◽  
Bing Han

This article studies the fixed-time robust control problem for the longitudinal dynamics of hypersonic vehicles in the presence of parametric uncertainties, external disturbances and input constraints. First, the dynamic model is transformed into two fourth-order integral chain subsystems by feedback linearization technology. Four novel fast integrating sliding surfaces are designed for each subsystem to guarantee the fixed time convergence of the errors and the derivatives. The double power reaching law is investigated to accelerate the convergence of sliding surfaces. Furthermore, the fixed-time disturbance observer technique is applied to estimate the lumped disturbance precisely. A novel fixed-time anti-saturation auxiliary system is designed to tackle the saturation caused by constraints of actuators. Then the semi-global uniform boundedness of the closed-loop system in a fixed time is proved by Lyapunov’s stability theory. Finally, comparison simulation experiments with the existing higher order sliding mode control method are carried out to verify the proposed method’s effectiveness and superiority.


Sign in / Sign up

Export Citation Format

Share Document