scholarly journals Stability and Bifurcation Analysis of a Nonlinear Discrete Logistic Model with Delay

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Daiyong Wu ◽  
Hai Zhang ◽  
Jinde Cao ◽  
Tasawar Hayat

We consider a nonlinear discrete logistic model with delay. The characteristic equation of the linearized system at the positive equilibrium is a polynomial equation involving high order terms. We obtain the conditions ensuring the asymptotic stability of the positive equilibrium and the existence of Neimark-Sacker bifurcation, with respect to the parameter of the model. Based on the bifurcation theory, we discuss Neimark-Sacker bifurcation direction and the stability of bifurcated solutions. Finally, some numerical simulations are performed to illustrate the theoretical results.

2017 ◽  
Vol 27 (11) ◽  
pp. 1750177 ◽  
Author(s):  
Xin Wei ◽  
Junjie Wei

A diffusive photosensitive CDIMA system with delayed feedback subject to Neumann boundary conditions is considered. We derive the conditions of the occurrence of Turing instability. We also investigate the influence of delay on the stability of the positive equilibrium of the system, and prove that delay induces the occurrence of Hopf bifurcation. By computing the normal form on the center manifold, we give the formulas determining the properties of the Hopf bifurcation. Finally, we give some numerical simulations to support and strengthen the theoretical results. Our study shows that diffusion and delayed feedback can effect the stability of the equilibrium of the system.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Hai Zhang ◽  
Daiyong Wu ◽  
Jinde Cao

We discuss the delay-independent asymptotic stability of Caputo type fractional-order neutral differential systems with multiple discrete delays. Based on the algebraic approach and matrix theory, the sufficient conditions are derived to ensure the asymptotic stability for all time-delay parameters. By applying the stability criteria, one can avoid solving the roots of transcendental equations. The results obtained are computationally flexible and convenient. Moreover, an example is provided to illustrate the effectiveness and applicability of the proposed theoretical results.


2020 ◽  
Vol 30 (15) ◽  
pp. 2050231
Author(s):  
Zhenliang Zhu ◽  
Mengxin He ◽  
Zhong Li ◽  
Fengde Chen

This paper aims to study the dynamic behavior of a logistic model with feedback control and Allee effect. We prove the origin of the system is always an attractor. Further, if the feedback control variable and Allee effect are big enough, the species goes extinct. According to the analysis of the Jacobian matrix of the corresponding linearized system, we obtain the threshold condition for the local asymptotic stability of the positive equilibrium point. Also, we study the occurrence of saddle-node bifurcation, supercritical and subcritical Hopf bifurcations with the change of parameter. By calculating a universal unfolding near the cusp and choosing two parameters of the system, we can draw a conclusion that the system undergoes Bogdanov–Takens bifurcation of codimension-2. Numerical simulations are carried out to confirm the feasibility of the theoretical results. Our research can be regarded as a supplement to the existing literature on the dynamics of feedback control system, since there are few results on the bifurcation in the system so far.


2016 ◽  
Vol 26 (04) ◽  
pp. 1650066 ◽  
Author(s):  
Yan’e Wang ◽  
Jianhua Wu ◽  
Yunfeng Jia

A two-species biological depletion model in a bounded domain is investigated in which one species is a substrate and the other is an activator. Firstly, under the no-flux boundary condition, the asymptotic stability of constant steady-states is discussed. Secondly, by viewing the feed rate of the substrate as a parameter, the steady-state bifurcations from constant steady-states are analyzed both in one-dimensional kernel case and in two-dimensional kernel case. Finally, numerical simulations are presented to illustrate our theoretical results. The main tools adopted here include the stability theory, the bifurcation theory, the techniques of space decomposition and the implicit function theorem.


2018 ◽  
Vol 23 (5) ◽  
pp. 691-709
Author(s):  
Yanqin Wang ◽  
Ling Yang ◽  
Jie Yan

In this paper, we construct a delayed diffusive model to explore the spatial dynamics of cell cycle in G2/M transition. We first obtain the local stability of the unique positive equilibrium for this model, which is irrelevant to the diffusion. Then, through investigating the delay-induced Hopf bifurcation in this model, we establish the existence of spatially homogeneous and inhomogeneous bifurcating periodic solutions. Applying the normal form and center manifold theorem of functional partial differential equations, we also determine the stability and direction of these bifurcating periodic solutions. Finally, numerical simulations are presented to validate our theoretical results.


2021 ◽  
Vol 31 (15) ◽  
Author(s):  
Zhichao Jiang ◽  
Weicong Zhang ◽  
Xueli Bai ◽  
Maoyan Jie

In this paper, a phytoplankton and zooplankton relationship system with two delays is investigated whose coefficients are related to one of the two delays. Firstly, the dynamic behaviors of the system with one delay are given and the stability of positive equilibrium and the existence of periodic solutions are obtained. Using the fact that the system may occur, the stable switching phenomenon is verified. Under certain conditions, the periodic solutions will exist in a wide range as the delay gets away from critical values. Fixing the delay [Formula: see text] in the stable interval, it is revealed that the effect of [Formula: see text] can also cause the vibration of system. This explains that two delays play an important role in the oscillation behavior of the system. Furthermore, using the crossing curve methods, the stable changes of the positive equilibrium in two-delays plane are given, which generalizes the results of systems for which the coefficients do not depend on delay. Some numerical simulations are provided to verify the theoretical results.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Tiansi Zhang ◽  
Xuehui Ji ◽  
Bo Li

Periodic oscillations of solutions of a chemostat-type model in which a species feeds on a limiting nutrient are considered. The model incorporates two discrete delays representing the lag in nutrient recycling and nutrient conversion. Through the study of characteristic equation associated with the linearized system, a unique positive equilibrium is found and proved to be locally asymptotically stable under some conditions. Meanwhile, a Hopf bifurcation causing periodic solutions is also obtained. Numerical simulations illustrate the theoretical results.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Binfeng Xie

AbstractIn this paper, we propose and investigate a prey–predator model with Holling type II response function incorporating Allee and fear effect in the prey. First of all, we obtain all possible equilibria of the model and discuss their stability by analyzing the eigenvalues of Jacobian matrix around the equilibria. Secondly, it can be observed that the model undergoes Hopf bifurcation at the positive equilibrium by taking the level of fear as bifurcation parameter. Moreover, through the analysis of Allee and fear effect, we find that: (i) the fear effect can enhance the stability of the positive equilibrium of the system by excluding periodic solutions; (ii) increasing the level of fear and Allee can reduce the final number of predators; (iii) the Allee effect also has important influence on the permanence of the predator. Finally, numerical simulations are provided to check the validity of the theoretical results.


2016 ◽  
Vol 26 (03) ◽  
pp. 1650047 ◽  
Author(s):  
Jiantao Zhao ◽  
Junjie Wei

A reaction–diffusion plankton system with delay and quadratic closure term is investigated to study the interactions between phytoplankton and zooplankton. Sufficient conditions independent of diffusion and delay are obtained for the persistence of the system. Our conclusions show that diffusion can induce Turing instability, delay can influence the stability of the positive equilibrium and induce Hopf bifurcations to occur. The computational formulas which determine the properties of bifurcating periodic solutions are given by calculating the normal form on the center manifold, and some numerical simulations are carried out for illustrating the theoretical results.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Yi Zhang ◽  
Yueming Jie ◽  
Xinyou Meng

A singular biological economic model with harvesting and stage structure is presented. The local stability of equilibriums of the system is investigated when the economic profit parameter is zero, and the conditions of the singularity induced bifurcation occurring at the positive equilibrium are obtained by the singular systems theory and bifurcation theory. In order to eliminate the singularity induced bifurcation, a state feedback controller is designed by controlling the fishing effort. At last, an application example is given to illustrate the validity of the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document