scholarly journals Systems Approaches Evaluating the Perturbation of Xenobiotic Metabolism in Response to Cigarette Smoke Exposure in Nasal and Bronchial Tissues

2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Anita R. Iskandar ◽  
Florian Martin ◽  
Marja Talikka ◽  
Walter K. Schlage ◽  
Radina Kostadinova ◽  
...  

Capturing the effects of exposure in a specific target organ is a major challenge in risk assessment. Exposure to cigarette smoke (CS) implicates the field of tissue injury in the lung as well as nasal and airway epithelia. Xenobiotic metabolism in particular becomes an attractive tool for chemical risk assessment because of its responsiveness against toxic compounds, including those present in CS. This study describes an efficient integration from transcriptomic data to quantitative measures, which reflect the responses against xenobiotics that are captured in a biological network model. We show here that our novel systems approach can quantify the perturbation in the network model of xenobiotic metabolism. We further show that this approach efficiently compares the perturbation upon CS exposure in bronchial and nasal epithelial cellsin vivosamples obtained from smokers. Our observation suggests the xenobiotic responses in the bronchial and nasal epithelial cells of smokers were similar to those observed in their respective organotypic models exposed to CS. Furthermore, the results suggest that nasal tissue is a reliable surrogate to measure xenobiotic responses in bronchial tissue.

2016 ◽  
Vol 6 ◽  
Author(s):  
James Jukosky ◽  
Benoit J. Gosselin ◽  
Leah Foley ◽  
Tenzin Dechen ◽  
Steven Fiering ◽  
...  

2016 ◽  
Vol 48 (12) ◽  
pp. 950-960 ◽  
Author(s):  
Christopher A. Drummond ◽  
Laura E. Crotty Alexander ◽  
Steven T. Haller ◽  
Xiaoming Fan ◽  
Jeffrey X. Xie ◽  
...  

Clinical studies indicate that smoking combustible cigarettes promotes progression of renal and cardiac injury, leading to functional decline in the setting of chronic kidney disease (CKD). However, basic studies using in vivo small animal models that mimic clinical pathology of CKD are lacking. To address this issue, we evaluated renal and cardiac injury progression and functional changes induced by 4 wk of daily combustible cigarette smoke exposure in the 5/6th partial nephrectomy (PNx) CKD model. Molecular evaluations revealed that cigarette smoke significantly ( P < 0.05) decreased renal and cardiac expression of the antifibrotic microRNA miR-29b-3 and increased expression of molecular fibrosis markers. In terms of cardiac and renal organ structure and function, exposure to cigarette smoke led to significantly increased systolic blood pressure, cardiac hypertrophy, cardiac and renal fibrosis, and decreased renal function. These data indicate that decreased expression of miR-29b-3p is a novel mechanism wherein cigarette smoke promotes accelerated cardiac and renal tissue injury in CKD. (155 words)


PLoS ONE ◽  
2014 ◽  
Vol 9 (7) ◽  
pp. e98197 ◽  
Author(s):  
Henk Koning ◽  
Antoon J. M. van Oosterhout ◽  
Uilke Brouwer ◽  
Lisette E. den Boef ◽  
Renée Gras ◽  
...  

Author(s):  
Feng Wang ◽  
Stefan Hadzic ◽  
Elsa T. Roxlau ◽  
Baerbel Fuehler ◽  
Annabella Janise-Libawski ◽  
...  

Abstract Cigarette smoke has been identified as a major risk factor for the development of age-related macular degeneration (AMD). As an alternative to conventional cigarettes (C-cigarette), electronic cigarettes (E-cigarette) have been globally promoted and are currently widely used. The increasing usage of E-cigarettes raises concerns with regard to short- (2 weeks), medium- (3 months), and long- (8 months) term consequences related to retinal tissue. In this report, a controlled study in mouse models was conducted to probe the comprehensive effects of E-cigarette vapor on retina, retinal pigmented epithelium (RPE), and choroidal tissues by (1) comparing the effects of C-cigarette smoke and E-cigarette vapor on retina separately and (2) determining the effects of E-cigarette vapor on the RPE and analyzing the changes with regard to inflammatory (IL-1β, TNFα, iNOS) and angiogenic (VEGF, PEDF) mediators in retina/RPE/choroid by ELISA assays. The data showed that C-cigarette smoke exposure promoted an inflammatory reaction in the retina in vivo. Mice exposed to E-cigarette (nicotine-free) vapor developed inflammatory and angiogenic reactions more pronounced in RPE and choroid as compared to retinal tissue, while nicotine-containing E-cigarette vapor caused even a more serious reaction. Both inflammatory and pro-angiogenic reactions increased with the extension of exposure time. These results demonstrate that exposure to C-cigarette smoke is harmful to the retina. Likewise, the exposure to E-cigarette vapor (with or without nicotine) increases the occurrence and progression of inflammatory and angiogenic stimuli in the retina, which might also be related to the onset of wet AMD in humans. Key messages C-cigarette smoke exposure promotes an inflammatory reaction in the retina in vivo. Mice exposed to E-cigarette (nicotine-free) vapor develop inflammatory and angiogenic reactions more pronounced in RPE and choroid compared to retinal tissue, while nicotine-containing E-cigarette vapor causes even a more serious reaction. Both inflammatory and pro-angiogenic reactions increase with the extension of E-cigarette vapor exposure time.


1994 ◽  
Vol 266 (4) ◽  
pp. L382-L388 ◽  
Author(s):  
A. J. Ghio ◽  
J. Stonehuerner ◽  
D. R. Quigley

Deposition of pigmented matter in the lower respiratory tract correlates with the extent of emphysema in smokers as well as with free radical generation and iron accumulation. Pulmonary emphysema is postulated to be mediated by free radical generation which is either directly or indirectly associated with cigarette smoke exposure. The hypothesis was tested that 1) incomplete combustion of tobacco yields humic-like substances (HLS) which 2) deposit in the lung as pigmented particulates, 3) complex iron cations in vitro and in vivo, and 4) have a capacity to catalyze oxidant formation. HLS, isolated by alkali extraction of cigarette smoke condensate (CSC) (Tobacco Health Research Institute, University of Kentucky), demonstrated a high carbon and low carboxylate content on elemental and functional group analyses, respectively, compared with values for HLS sequestered from soils. The HLS isolated from CSC had a capacity to complex iron in vitro and accumulated the metal in vivo after intratracheal instillation in an animal model. Both HLS and its iron complex generated free radicals, and some portion of this oxidant generation was metal dependent. Lung tissue collected at autopsy from smokers contained HLS with an infrared spectrum almost identical to that of the material isolated from CSC. Associations between particulate deposition, metal accumulation, and free radical generation suggest a possible role of HLS in the induction of lung disease following cigarette exposure.


Sign in / Sign up

Export Citation Format

Share Document