scholarly journals Comparison of Tidalites in Siliciclastic, Carbonate, and Mixed Siliciclastic-Carbonate Systems: Examples from Cambrian and Devonian Deposits of East-Central Iran

ISRN Geology ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-21 ◽  
Author(s):  
Hamed Zand-Moghadam ◽  
Reza Moussavi-Harami ◽  
Asadollah Mahboubi ◽  
Hoda Bavi

For the comparison of lithofacies in siliciclastic, carbonate, and mixed siliciclastic-carbonate tidal systems, three successions including Top Quartzite (Lower-Middle Cambrian), Deranjal Formation (Upper Cambrian), and Padeha Formation (Lower-Middle Devonian) in the north of Kerman and Tabas regions (SE and E central Iran) were selected and described, respectively. Lithofacies analysis led to identification of 14 lithofacies (Gcm, Gms, Gt, Sp, St, Sh, Sl, Sr, Sm, Se, Sr(Fl), Sr/Fl, Fl(Sr), and Fl) and 4 architectural elements (CH, LA, SB, and FF) in the Top Quartzite, 7 lithofacies (Dim, Dp, Dr, Ds, Dl, Dr/Dl, and Fcl) and 2 architectural elements (CH, CB) in the Deranjal Formation, and 17 lithofacies (Sp, St, Sh, Sl, Sr, Se, Sr(Fl), Sr/Fl, Fl(Sr), Fl, Dr, Ds, Sr/Dl, El, Efm, Efl, and Edl) and 5 architectural elements (CH, LA, SB, FF, and EF) in the Padeha Formation that have been deposited under the influence of tides. The most diagnostic features for comparison of the three tidalite systems are sedimentary structures, textures, and fabrics as well as architectural elements (lithofacies association). The CH element in siliciclastics has the highest vertical thickness and the least lateral extension, while in the carbonate tidalites, it has the least vertical thickness and the most lateral extension compared to in other systems.

2014 ◽  
Vol 47 (1) ◽  
pp. 21-59 ◽  
Author(s):  
Gerd Geyer ◽  
Aram Bayet-Goll ◽  
Markus Wilmsen ◽  
Asadollah Mahboubi ◽  
Reza Moussavi-Harami

1999 ◽  
Vol 11 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Michael L. Curtis ◽  
Simon A. Lomas

Deposition of the Upper Cambrian succession of the Ellsworth Mountains was influenced by major, episodic tectonically-driven changes to the depositional basin geometry. We subdivide the succession into four stratigraphical sequences based on the recognition of three sequence-bounding unconformities. The upper part of Sequence 1 is composed of the laterally equivalent Liberty Hills, Springer Peak and Frazier Ridge formations, a siliciclastic fluvial to marine deltaic association displaying NW-directed palaeocurrents. A switch in the position of the Late Cambrian depocentre from the north-west to the south coincided with cessation of terrigenous clastic deposition and accumulation of Sequence 2, the limestones of the Minaret Formation. Previously unreported talus breccias from the Independence Hills provide important clues to basin configuration at this time. A brief period of emergence of the Minaret Formation is inferred, prior to rapid subsidence and disconformable deposition of Sequence 3 (the ‘transition beds’) in outer-inner shelf environments. Localized intra-basinal uplift occurred prior to the deposition of Sequence 4 (the lower Crashsite Group), the base of which is locally an erosive unconformity, with a correlative conformity exposed elsewhere. We interpret the Upper Cambrian succession as representing the ‘rift-drift’ transition from initial rifting (preceded by Middle Cambrian volcanism) to thermal subsidence along the South African sector of the palaeo-Pacific margin of Gondwana.


2014 ◽  
Vol 152 (1) ◽  
pp. 28-40 ◽  
Author(s):  
ED LANDING ◽  
GERD GEYER ◽  
ROBERT BUCHWALDT ◽  
SAMUEL A. BOWRING

AbstractA volcanic tuff 1.0 m above the base of the Triebenreuth Formation in the Franconian Forest provides the first precise and biostratigraphically bracketed date within the traditional Middle Cambrian. The first illustration of fossils from the Triebenreuth Formation in this report and their discussion allow a more highly refined correlation within the Middle Cambrian. A weighted mean 206Pb–238U date of 503.14±0.13/0.25/0.59 Ma on zircons from this subaerial pyroclastic tuff was determined by U–Pb chemical abrasion isotope dilution mass spectrometry (CA-TIMS) techniques. At c. 6.0–7.0 Ma younger than the base of the traditional Middle Cambrian in Avalonia, the new West Gondwanan date from east-central Germany suggests that estimates of 500 Ma for the base of the traditional Upper Cambrian and 497 Ma on the base of the Furongian Series may prove to be too ‘old’. Biostratigraphically well-bracketed dates through most of the Middle Cambrian/Series 3 and below the upper Upper Cambrian/upper Furongian Series do not exist. An earlier determined 494.4±3.8 Ma date from the Southwell Group of Tasmania may actually prove to be a reasonable estimate for the age of the base of the traditional Upper Cambrian. Until high precision dates are determined on the base of the traditional Upper Cambrian and base of the Furongian Series, the rates of biotic replacements and geological developments and the durations of biotic zones in the Middle/Series 3 and Upper Cambrian/Furongian Series remain as ‘best guesses’.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Ming-Xiang Mei ◽  
Muhammad Riaz ◽  
Zhen-Wu Zhang ◽  
Qing-Fen Meng ◽  
Yuan Hu

AbstractAs a type of non-laminated microbial carbonates, dendrolites are dominated by isolated dendritic clusters of calcimicrobes and are distinct from stromatolites and thrombolites. The dendrolites in the upper part of the Miaolingian Zhangxia Formation at Anjiazhuang section in Feicheng city of Shandong Province, China, provide an excellent example for further understanding of both growth pattern and forming mechanism of dendrolites. These dendrolites are featured by sedimentary fabrics and composition of calcified microbes as follows. (1) The strata of massive limestones, composed of dendrolites with thickness of more than one hundred meters, intergrade with thick-bedded to massive leiolites, formimg the upper part of a third-order depositional sequence that constitutes a forced regressive systems tract. (2) A centimeter-sized bush-like fabric (shrub) typically produced by calcified microbes is similar to the mesoclot in thrombolites but distinctive from clotted fabrics of thrombolites. This bush-like fabric is actually constituted by diversified calcified microbes like the modern shrub as a result of gliding mobility of filamentous cyanobacteria. Such forms traditionally include: the Epiphyton group (which actually has uncertain biological affinity), the Hedstroemia group which closely resembles modern rivulariacean cyanobacteria, and the possible calcified cyanobacteria of the Lithocodium–Bacinella group. (3) Significantly, dense micrite of leiolite is associated with sponge fossils and burrows, and is covered by microstromatolite. The Lithocodium–Bacinella group is a controversial group of interpreted calcified cyanobacteria in the Cambrian that has also been widely observed and described in the Mesozoic. Therefore, dendrolites with symbiosis of leiolites in the studied section provide an extraordinary example for further understanding of growing style of bush-like fabrics (shrubs) of the dendrolites dominated by cyanobacterial mats. Furthermore, the present research provides some useful thinking approaches for better understanding of the history of the Early Paleozoic skeletal reefs and the microbe–metazoan transitions of the Cambrian.


1988 ◽  
Vol 62 (2) ◽  
pp. 218-233 ◽  
Author(s):  
John Mark Malinky

Concepts of the family Hyolithidae Nicholson fide Fisher and the genera Hyolithes Eichwald and Orthotheca Novak have been expanded through time to encompass a variety of morphologically dissimilar shells. The Hyolithidae is here considered to include only those hyolithid species which have a rounded (convex) dorsum; slopes on the dorsum are inflated, and the venter may be flat or slightly inflated. Hyolithes encompasses species which possess a low dorsum and a prominent longitudinal sulcus along each edge of the dorsum; the ligula is short and the apertural rim is flared. The emended concept of Orthotheca includes only those species of orthothecid hyoliths which have a subtriangular transverse outline and longitudinal lirae covering the shell on both dorsum and venter.Eighteen species of Hyolithes and one species of Orthotheca from the Appalachian region and Western Interior were reexamined in light of more modern taxonomic concepts and standards of quality for type material. Reexamination of type specimens of H. similis Walcott from the Lower Cambrian of Newfoundland, H. whitei Resser from the Lower Cambrian of Nevada, H. billingsi Walcott from the Lower Cambrian of Nevada, H. gallatinensis Resser from the Upper Cambrian of Wyoming, and H. partitus Resser from the Middle Cambrian of Alabama indicates that none of these species represents Hyolithes. Hyolithes similis is here included under the new genus Similotheca, in the new family Similothecidae. Hyolithes whitei is designated as the type species of the new genus Nevadotheca, to which H. billingsi may also belong. Hyolithes gallatinensis is referred to Burithes Missarzhevsky with question, and H. partitus may represent Joachimilites Marek. The type or types of H. attenuatus Walcott, H. cecrops Walcott, H. comptus Howell, H. cowanensis Resser, H. curticei Resser, H. idahoensis Resser, H. prolixus Resser, H. resseri Howell, H. shaleri Walcott, H. terranovicus Walcott, and H. wanneri Resser and Howell lack shells and/or other taxonomically important features such as a complete aperture, rendering the diagnoses of these species incomplete. Their names should only be used for the type specimens until better preserved topotypes become available for study. Morphology of the types of H.? corrugatus Walcott and “Orthotheca” sola Resser does not support placement in the Hyolitha; the affinities of these species are uncertain.


1975 ◽  
Vol 12 (12) ◽  
pp. 2065-2079 ◽  
Author(s):  
Valdemar Poulsen ◽  
Michael M. Anderson

The Middle-Upper Cambrian transition in southeastern Newfoundland is shown to be very similar to the transition in Scandinavia and in the English Midlands. The late Middle Cambrian Lejopyge laevigata Zone, which is recorded for the first time from eastern Canada, is contained in the basal part of the Elliott Cove Formation and is conformably overlain by the Upper Cambrian Agnostus pisiformis Zone. The following trilobite species from the Lejopyge laevigata Zone at Manuels River and on Random Island are described: Andrarina costata (Angelin), Paradoxides sp., Lejopyge laevigata (Dalman), and Peronopsis insignis (Wallerius).


Facies ◽  
2009 ◽  
Vol 56 (1) ◽  
pp. 59-87 ◽  
Author(s):  
Markus Wilmsen ◽  
Franz T. Fürsich ◽  
Kazem Seyed-Emami ◽  
Mahmoud R. Majidifard ◽  
Massoud Zamani-Pedram

Sign in / Sign up

Export Citation Format

Share Document