scholarly journals Synthesis, Characterization, and Thermal and Antimicrobial Activities of Some Novel Organotin(IV): Purine Base Complexes

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Reena Jain ◽  
Rajeev Singh ◽  
N. K. Kaushik

A new series of organotin(IV) complexes with purine bases theophylline (HL1) and theobromine (L2) of the types R3Sn(L1), R2Sn(L1)Cl, R3Sn(L2)Cl, and R2Sn(L2)Cl2(R = C6H5CH2–;p-ClC6H4CH2–) have been synthesized in anhydrous THF. The complexes were characterized by elemental analysis, conductance measurements, molecular weight determinations, UV-vis, IR,1H,13C NMR, and mass spectral studies. Various kinetic and thermodynamic parameters of these complexes have also been determined using TG/DTA technique. The thermal decomposition techniques indicate the formation of SnO2as a residue. The results show that the ligands act as bidentate, forming a five-member chelate ring. All the complexes are 1 : 1 metal-ligand complexes. In order to assess their antimicrobial activity, the ligands and their corresponding complexes have also been testedin vitroagainst bacteria (E. coli, S. aureus, andP. pyocyanea) and fungi (Rhizopus oryzaeandAspergillus flavus). All the complexes exhibit remarkable activity, and the results provide evidence that the studied complexes might indeed be a potential source of antimicrobial agents.

2012 ◽  
Vol 77 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Manav Malhotra ◽  
Mohit Sanduja ◽  
Abdul Samad ◽  
Aakash Deep

Structural modification of the front line antitubercular drug isoniazid provide a lipophilic adaptations of the drug in which hydrazide moiety of isoniazid is replaced by 1,3,4-oxadiazole heterocycles to eliminate in-vivo acetylation by arylamine N-acetyltransferase which results to form inactive acetylated drug. In the present study a series of sixteen oxadiazole derivatives were synthesized and characterized by (IR, 1H NMR, 13C NMR and Mass spectral) studies. All the synthesized compounds were evaluated for their antimicrobial activity by broth dilution method against two Gram positive strains (Bacillus subtilis and Staphylococcus aureus), two Gram negative strains (Pseudomonas aeruginosa and Escherichia coli) and fungal strain (Candida albicans and Aspergillus niger). The minimum inhibitory concentration of the compounds was in the range of 1.56-50 ?g ml-1 against bacterial and fungal strain. The results revealed that all synthesized compounds have a significant biological activity against the tested microorganisms. Among the synthesized derivatives 4g, 4h, 4m and 4p were found to be most effective antimicrobial compounds.


2020 ◽  
Vol 85 (2) ◽  
pp. 155-162
Author(s):  
Thi-Dan Thach ◽  
Thi Le ◽  
Thien-Annguyen Nguyen ◽  
Chi-Hien Dang ◽  
Van-Su Dang ◽  
...  

Two series of sulfonamides were synthesized from 4-hydrazinylbenzenesulfonamide as the key starting material. 1,3,5-Triarylpyrazoline sulfonamides (2a?i) were obtained by cyclocondensation of various chalcones in 53? ?64 % yields, while 4-thiazolidinone derivatives (4a?e) were synthesized by cyclocondensation between mercaptoacetic acid and different phenylhydrazones in 43?62 % yields. The synthesized compounds were characterized based on FTIR, 1H-NMR, 13C-NMR and HRMS data. The sulfonamides were evaluated for their in vitro antimicrobial activities against four bacterial strains (E. coli, P. aeruginosa, B. subtillis and S aureus), two filamentous fungal strains (A. niger and F. oxysporum) and two yeast strains (C. albicans and S. cerevisiae). Seven pyrazolines, 2a?c and 2e?h, exhibited significant inhibition of different microbial strains. Among them, compound 2b displayed good antifungal activity against A. niger (MIC value at 12.5 ?g mL-1) over the reference drug.


2020 ◽  
Vol 12 (5) ◽  
pp. 695-701
Author(s):  
Sonika Sharma ◽  
Neeraj Sharma

The tris(nicotinohydroxamato) vanadium(III) complex of composition [V(C5H4NCONHO)3] have been synthesized by the reaction of VCl3 with three equivalents of potassium salts of nicotinohydroxamate in methanol medium under nitrogen atmosphere. The characterization of complex has been accomplished by elemental analyses, molar conductivity, magnetic moment measurements, IR, electronic and mass spectral studies. An octahedral geometry around vanadium, inferred from physicochemical and spectral studies has been proposed for complex. The antimicrobial activities of the newly synthesized complex, ligand and precursor VCl3 have been evaluated against some pathogenic bacteria as E. coli, S. aureus, S. typhi, S. paratyphi, S. epidermidis and K. pneumoniae and fungi such as A. niger, B. fulva and M. circinelloid by minimum inhibitory concentration method. The complex exhibited promising antimicrobial activity relative to free ligand and metal precursor.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Ramalingam Peraman ◽  
Rajendran Kuppusamy ◽  
Sunil Kumar Killi ◽  
Y. Padmanabha Reddy

Considering quinoxaline as a privileged structure for the design of potent intercalating agents, some new sugar conjugates of quinoxaline were synthesized and characterized by IR, 1HNMR, 13C NMR, and mass spectral data. In vitro testing for antitubercular and antimicrobial activities was performed against Mycobacterium tuberculosis H37Rv and some pathogenic bacteria. Results revealed that conjugate containing ribose moiety demonstrated the most promising activity against Mycobacteria and bacteria with minimum inhibitory concentrations (MIC) of 0.65 and 2.07 μM, respectively. Other conjugates from xylose, glucose, and mannose were moderately active whilst disaccharides conjugates were found to be less active. In silico docking analysis of prototype compound revealed that ATP site of DNA gyrase B subunit could be a possible site for inhibitory action of these synthesized compounds.


2005 ◽  
Vol 70 (6) ◽  
pp. 807-815 ◽  
Author(s):  
K.M. Thakar ◽  
D.J. Paghdar ◽  
P.T. Chovatia ◽  
H.S. Joshi

The synthesis of a group of thiohydantoins and thiobarbiturates derived from 2-N-arylthiopyridocarbonyl-3,5-dichlorobenzo[b]thiophene is described. The structures of the new compounds are supported by IR, 1H-NMR and mass spectral data. These compounds were tested in vitro for their antimicrobial activities.


2019 ◽  
Author(s):  
Chem Int

New copper complexes, [Cu(phen)2(Thy)]2Cl and [Cu(phen)2(Ad)]2Cl (phen = 1,10-phenantroline, Ad (Adenine, a purine nucleobase) and Thy (Thymine, a pyrimidine nucleobase)), were synthesized and characterized by atomic absorption spectroscopy (AAS), conductivity measurement, UV-visible and infrared (IR) techniques. The complexes were tested for their antimicrobial activity against two gram positive and two gram negative bacterial strains. The results of in vitro antimicrobial activities were compared with the commercially available antimicrobial agents (ciprofloxacin and chloramphenicol). This comparative study has demonstrated that [Cu(phen)2(Thy)]2Cl inhibited the growth of methicillin resistant Staphylococcus aureous (MRSA), Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumonia) better than chloramphenicol by 11.25%, 19.41% and 25.35%, respectively. It also showed better activities than ciprofloxacine on MRSA and K. pneumoniae by 2.50% and 12.13%, respectively. Similarly, [Cu(phen)2(Ad)]2Cl demonstrated better inhibitions than chloramphenicol against MRSA, E. coli and K. pneumoniae by 11.24%, 2.48% and 9.06%, respectively. Therefore, after in vivo cytotoxicity investigations, these complexes could be considered as potential antimicrobial agents.


2020 ◽  
Vol 5 (4) ◽  
pp. 295-300
Author(s):  
Yogesh J. Sanghani ◽  
Suresh B. Koradiya ◽  
Krushnakumar J. Jilariya

In this work, pyrazole based oxothiazolidine hybrids, 4-{4-[2-(1- phenyl-3-(substituted)phenyl-1H-pyrazol-4-yl)-4-oxo-thiazolidin-3- yl]-phenyl}-morpholin-3-one (11a-l) were synthesized using molecular hybridization approach through Vilsmeier-Haack reaction. The titled compounds 11a-l were characterized by elemental analysis, IR, 1H NMR and mass spectral studies. The antibacterial activity of 11a-l was evaluated in vitro by agar cup plate method against B. cocous, B. subtillis, E. coli and P. vulgaris. The antifungal activity of compounds 11a-l was evaluated in vitro by agar based disk diffusion method against A. niger. The results of antibacterial and antifungal evaluation were reported in terms of zone of inhibition measured in mm. The synthesized compounds 11a-l exhibited moderate to good antibacterial and antifungal potential. Compound 4-{4-[2-(1-phenyl-3-(2-methoxyphenyl) phenyl-1H-pyrazol-4-yl)-4-oxo-thiazolidin-3-yl]-phenyl}- morpholin-3-one (11h) emerged as a most potent antimicrobial agent displaying zone of inhibition 21, 20, 21, 24 and 20 mm against B. cocous, B. subtillis, E. coli, P. vulgaris and A. niger, respectively.


2019 ◽  
Vol 6 (12) ◽  
pp. 63-85
Author(s):  
Helen O. Echekwube ◽  
Pius O. Ukoha ◽  
Oguejiofo T. Ujam ◽  
Charles O. Nwuche ◽  
Jonnie N. Asegbeloyin ◽  
...  

3-[(2-aminophenyl)imino]-1,3-dihydro-2H-indol-2-one, (Lo), 1,3-phenylenediazanylylidene di (1,3-dihydro-2H-indol-2-one), (Lm) and 1,4-phenylenediazanylylidene di(1,3-dihydro-2H-indol-2-one) (Lp) were synthesized by the reaction of 1H-indole-2,3-dione with benzene-1,2-diamine, benzene-1,3-diamine and benzene-1,4-diamine respectively. The reaction of Lo, Lm and Lp with Co(II) and Ni(II) halides gave the corresponding coordination complexes which were characterized by elemental analysis, molar conductance, infra-red, GC-MS and electronic spectral studies. Docking of the 1H-indole-2,3-diones toward the binding sites of penicillin binding protein and DNA gyrase showed they interacted favourably with the test antibacterial targets at deltaGs range of -2.51 to -5.48 kcal/mol. In accordance to literature report, coordination of cobalt and nickel to the ligands yielded metal complexes which exhibited improved interaction with the protein targets (at deltaGs range of -8.70 to -10.20 kcal/mol). In vitro antimicrobial studies against some microorganisms showed that some of the compounds were active against few Gram negative and Gram positive bacteria. The Lo, Lm and Lp had no activity against any of the test microorganisms but the Co(II) and Ni(II) complexes, showed antibacterial activity. The [Co(Lo)2] and [Ni(Lo)2] complexes generated the least antibacterial response. [Co(Lo)2] was ineffective against E. coli 6 and Staphylococcus sciuri subsp sciuri while Bacillus subtilis was resistant to [Ni(Lo)2] which moderately inhibited E. coli 14 (7 mm). Both compounds indicated zero activity against Pseudomonas aeruginosa. The complex that evoked the highest bactericidal activity were [CoLm]Cl2 and [NiLp]Cl2. The antibiogram activity of [CoLm]Cl2 was found between 20 and 30 mm with E. coli 6 displaying greater sensitivity (30 mm) and S. sciuri the least (20 mm). The activity of [NiLp]Cl2 complex indicate that the activity spectrum of the organisms occurred within 29 and 45 mm range; the least sensitive were E. coli 14 (29 mm) and B. subtilis (29 mm) while the most sensitive was S. sciuri subsp sciuri (45 mm). The two compounds were further studied for minimum inhibitory concentration (MIC) and their binding modes towards the studied protein targets were analyzed. Result indicate that the MIC of 1.25 ug/mL was determined for the complex ([NiLp]Cl2) against S. sciuri subsp sciuri (12 mm) while in case of [CoLm]Cl2, the MIC was 2.5 ug/mL (13 mm) against the same organism. The binding modes predicted for [CoLm]Cl2 and [NiLp]Cl2 identified essential residues necessary for interaction with the studied proteins and which could be targeted during structural/activity optimization.


2020 ◽  
Vol 33 (1) ◽  
pp. 127-131
Author(s):  
Riddhi A. Nayak ◽  
Anvita D. Mangte

In view of applications of N-glycosylated compounds in medicinal chemistry and in many other ways, herein the synthesis of novel N-glycosyl hydrazino carbothioamides is reported. New N-glycosyl hydrazino carbothioamides were synthesized by the condensation of per-O-acetyl glycosyl isothiocyanate with different aromatic hydrazides. The newly synthesized compounds were characterized by using the IR, 1H NMR and mass spectral studies. Antimicrobial evaluation of the synthesized N-glycosyl hydrazino carbothioamide was also examined. Antimicrobial activities of the synthesized compound were evaluated against bacteria E. coli, P. aeruginosa, S. aureus, S. pyogenus and fungi C. albicans, A. niger and A. clavatus. All the N-glycosyl hydrazino carbothioamides exhibit promising antimicrobial activity.


2021 ◽  
Vol 6 (2) ◽  
pp. 116-120
Author(s):  
Raj Bahadur Singh ◽  
Krishna Srivastava ◽  
Ram Prakash Tiwari ◽  
Jyoti Srivastava

The present work reports the synthesis of 4-(1-(substituted phenyl)-1H-naphtho[1,2-e][1,3]oxazin- 2(3H)-yl)-1-thia-4-azaspiro-[4.5]-decan-3-one IV(a-h) by 4-(((substituted phenyl)(2-hydroxynaphthalen- 1-yl) ethyl)amino)-1-thia-4-azaspiro[4.5]decan-3-one with formaldehyde in acetonitrile, containing a spiro ring obtained from the reaction of cyclohexylidene hydrazine and thioglycollic acid in DMF (cyclohexanone reacts with hydrazine hydrate in pyridine). The structures of the synthesized compounds have been established on the basis of elemental analysis, UV-vis absorption spectroscopy, IR, 1H NMR and mass spectral studies. The in vitro antimicrobial screening of all novel compounds was done against S. aureus, E. coli, P. aeruginosa and B. subtilis. The activity of compounds IVb, IVc, IVe and IVf compounds showed moderate to good activity against the tested microbes.


Sign in / Sign up

Export Citation Format

Share Document