scholarly journals Synthesis and Antimicrobial Studies of Novel N-Glycosyl Hydrazino Carbothioamide

2020 ◽  
Vol 33 (1) ◽  
pp. 127-131
Author(s):  
Riddhi A. Nayak ◽  
Anvita D. Mangte

In view of applications of N-glycosylated compounds in medicinal chemistry and in many other ways, herein the synthesis of novel N-glycosyl hydrazino carbothioamides is reported. New N-glycosyl hydrazino carbothioamides were synthesized by the condensation of per-O-acetyl glycosyl isothiocyanate with different aromatic hydrazides. The newly synthesized compounds were characterized by using the IR, 1H NMR and mass spectral studies. Antimicrobial evaluation of the synthesized N-glycosyl hydrazino carbothioamide was also examined. Antimicrobial activities of the synthesized compound were evaluated against bacteria E. coli, P. aeruginosa, S. aureus, S. pyogenus and fungi C. albicans, A. niger and A. clavatus. All the N-glycosyl hydrazino carbothioamides exhibit promising antimicrobial activity.

2021 ◽  
Vol 6 (2) ◽  
pp. 116-120
Author(s):  
Raj Bahadur Singh ◽  
Krishna Srivastava ◽  
Ram Prakash Tiwari ◽  
Jyoti Srivastava

The present work reports the synthesis of 4-(1-(substituted phenyl)-1H-naphtho[1,2-e][1,3]oxazin- 2(3H)-yl)-1-thia-4-azaspiro-[4.5]-decan-3-one IV(a-h) by 4-(((substituted phenyl)(2-hydroxynaphthalen- 1-yl) ethyl)amino)-1-thia-4-azaspiro[4.5]decan-3-one with formaldehyde in acetonitrile, containing a spiro ring obtained from the reaction of cyclohexylidene hydrazine and thioglycollic acid in DMF (cyclohexanone reacts with hydrazine hydrate in pyridine). The structures of the synthesized compounds have been established on the basis of elemental analysis, UV-vis absorption spectroscopy, IR, 1H NMR and mass spectral studies. The in vitro antimicrobial screening of all novel compounds was done against S. aureus, E. coli, P. aeruginosa and B. subtilis. The activity of compounds IVb, IVc, IVe and IVf compounds showed moderate to good activity against the tested microbes.


2019 ◽  
Vol 31 (5) ◽  
pp. 1087-1090 ◽  
Author(s):  
Pradip P. Deohate ◽  
Roshani S. Mulani

Microwave irradiative synthesis of triazine substituted pyrazoles i.e. (4-benzylideneamino-6-methyl-[1,3,5]-triazin-2-yl)-(5-methyl-2-substituted benzoyl/isonicotinoyl/cinnamoyl-pyrazol-3-yl)-amines have been achieved by the cyclocondensation of N-(4-benzylideneamino-6-methyl-[1,3,5]-triazin-2-yl)-3-oxo butyramide with substituted acid hydrazides. Synthesis of required butyramide was done by reacting 2,4-diamino-6-methyl-[1,3,5]-triazine with benzaldehyde and then condensing the product with ethyl acetoacetate. Structural investigation of synthesized compounds has been done by chemical transformation, elemental analysis and IR, 1H NMR, mass spectral studies. Study of antitubercular and antimicrobial activity of title compounds against some selected Gram-positive and Gram-negative microorganisms was performed to establish the relationship between structure and activity of compound.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Reena Jain ◽  
Rajeev Singh ◽  
N. K. Kaushik

A new series of organotin(IV) complexes with purine bases theophylline (HL1) and theobromine (L2) of the types R3Sn(L1), R2Sn(L1)Cl, R3Sn(L2)Cl, and R2Sn(L2)Cl2(R = C6H5CH2–;p-ClC6H4CH2–) have been synthesized in anhydrous THF. The complexes were characterized by elemental analysis, conductance measurements, molecular weight determinations, UV-vis, IR,1H,13C NMR, and mass spectral studies. Various kinetic and thermodynamic parameters of these complexes have also been determined using TG/DTA technique. The thermal decomposition techniques indicate the formation of SnO2as a residue. The results show that the ligands act as bidentate, forming a five-member chelate ring. All the complexes are 1 : 1 metal-ligand complexes. In order to assess their antimicrobial activity, the ligands and their corresponding complexes have also been testedin vitroagainst bacteria (E. coli, S. aureus, andP. pyocyanea) and fungi (Rhizopus oryzaeandAspergillus flavus). All the complexes exhibit remarkable activity, and the results provide evidence that the studied complexes might indeed be a potential source of antimicrobial agents.


2020 ◽  
Vol 12 (5) ◽  
pp. 695-701
Author(s):  
Sonika Sharma ◽  
Neeraj Sharma

The tris(nicotinohydroxamato) vanadium(III) complex of composition [V(C5H4NCONHO)3] have been synthesized by the reaction of VCl3 with three equivalents of potassium salts of nicotinohydroxamate in methanol medium under nitrogen atmosphere. The characterization of complex has been accomplished by elemental analyses, molar conductivity, magnetic moment measurements, IR, electronic and mass spectral studies. An octahedral geometry around vanadium, inferred from physicochemical and spectral studies has been proposed for complex. The antimicrobial activities of the newly synthesized complex, ligand and precursor VCl3 have been evaluated against some pathogenic bacteria as E. coli, S. aureus, S. typhi, S. paratyphi, S. epidermidis and K. pneumoniae and fungi such as A. niger, B. fulva and M. circinelloid by minimum inhibitory concentration method. The complex exhibited promising antimicrobial activity relative to free ligand and metal precursor.


2019 ◽  
Vol 11 (1) ◽  
pp. 43
Author(s):  
Festus Sunday Fabiyi ◽  
Friday O. Nwosu

Six new mixed-ligand complexes of Mo(IV) and W(IV) ions have been prepared and characterized. The three new complexes of Mo(IV) ions have the molecular formulae MoC12N2O5H18, MoC15N2O5H22 and MoC14N2O6H19 , while the W(II) ions are WC12N2O5H18, WC15N2O5H22 and WC14N2O6H19. The structures of the complexes were deduced from their ir, 1H nmr, and mass spectral studies. All the complexes were found to exhibit octahedral structures. Their antimicrobial activities against some bacteria and fungi species were found to be moderate.


2020 ◽  
Vol 5 (4) ◽  
pp. 295-300
Author(s):  
Yogesh J. Sanghani ◽  
Suresh B. Koradiya ◽  
Krushnakumar J. Jilariya

In this work, pyrazole based oxothiazolidine hybrids, 4-{4-[2-(1- phenyl-3-(substituted)phenyl-1H-pyrazol-4-yl)-4-oxo-thiazolidin-3- yl]-phenyl}-morpholin-3-one (11a-l) were synthesized using molecular hybridization approach through Vilsmeier-Haack reaction. The titled compounds 11a-l were characterized by elemental analysis, IR, 1H NMR and mass spectral studies. The antibacterial activity of 11a-l was evaluated in vitro by agar cup plate method against B. cocous, B. subtillis, E. coli and P. vulgaris. The antifungal activity of compounds 11a-l was evaluated in vitro by agar based disk diffusion method against A. niger. The results of antibacterial and antifungal evaluation were reported in terms of zone of inhibition measured in mm. The synthesized compounds 11a-l exhibited moderate to good antibacterial and antifungal potential. Compound 4-{4-[2-(1-phenyl-3-(2-methoxyphenyl) phenyl-1H-pyrazol-4-yl)-4-oxo-thiazolidin-3-yl]-phenyl}- morpholin-3-one (11h) emerged as a most potent antimicrobial agent displaying zone of inhibition 21, 20, 21, 24 and 20 mm against B. cocous, B. subtillis, E. coli, P. vulgaris and A. niger, respectively.


2021 ◽  
Vol 33 (11) ◽  
pp. 2653-2656
Author(s):  
Seema Pant ◽  
Pushpa Godwal ◽  
Kumari Sanju

Syntheses of novel twelve 8-substituted-2-(2-chlorophenyl/3-chlorophenyl)-4-(4-hydroxyphenyl/ phenyl)-2,3/2,5-dihydro-1,5-benzothiazepines have been carried out by the reactions of 5-substituted 2-aminobenzenethiols, the substituents being fluoro, chloro, bromo, methyl, methoxy or ethoxy with α,β-unsaturated ketones, 3-(2-chlorophenyl)-1-(4-hydroxyphenyl)-2-propenone or 3-(3-chloro-phenyl)-1-phenyl-2-propenone in dry ethanol in acidic medium in quest for the synthesis of 1,5-benzothiazepine compounds, which may have interesting biological activities. The precursors, substituted α,β-unsaturated ketones were obtained by employing the Claisen-Schmidt reaction; and the final products, obtained by Michael condensation, were characterized by analytical and spectral data comprising IR, 1H NMR and mass spectral studies. Two different series, 2,3-dihydro and 2,5-dihydro series of the final compounds were obtained depending on the substituents present, as indicated by the 1H NMR spectra. The newly synthesized compounds were studied for their antimicrobial activities against Staphylococcus aureus, Escherichia coli and Candida albicans taking imipenem, vancomycin and fluconazole as reference standards using Paper Disc method. Five of the compounds tested showed good antifungal activity against Candida albicans at the concentration of 200 μg/disc.


2019 ◽  
Vol 31 (9) ◽  
pp. 1895-1898
Author(s):  
Relangi Siva Subrahmanyam ◽  
Venkateswara Rao Anna

We report here an easy, efficient and green synthetic protocol for the (E)-1-aryl-3-(2-morpholinoquinolin-3-yl)prop-2-en-1-ones by the Claisen-Schmidt condensation of 2-morpholinoquinoline-3-carbaldehyde and different substituted acetophenones by using 1-butyl-3-methylimidazolium tetrafluoroborate (Bmim)BF4. The compounds were characterized by using 1H NMR, 13C NMR and mass spectral data and screened there in vitro antimicrobial activity against different bacterial and fungal organisms.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1406
Author(s):  
Rita Cava-Roda ◽  
Amaury Taboada-Rodríguez ◽  
Antonio López-Gómez ◽  
Ginés Benito Martínez-Hernández ◽  
Fulgencio Marín-Iniesta

Plant bioactive compounds have antimicrobial and antioxidant activities that allow them to be used as a substitute for synthetic chemical additives in both food and food packaging. To improve its sensory and bactericidal effects, its use in the form of effective combinations has emerged as an interesting possibility in the food industry. In this study, the antimicrobial activities of essential oils (EOs) of cinnamon bark, cinnamon leaves, and clove and the pure compounds vanillin, eugenol, and cinnamaldehyde were investigated individually and in combination against Listeria monocytogenes and Escherichia coli O157:H7. The possible interactions of combinations of pure compounds and EOs were performed by the two-dimensional checkerboard assay and isobologram methods. Vanillin exhibited the lowest antimicrobial activity (MIC of 3002 ppm against L. monocytogenes and 2795 ppm against E. coli O157:H7), while clove and cinnamon bark EOs exhibited the highest antimicrobial activity (402–404 against L. monocytogenes and 778–721 against E. coli O157:H7). For L. monocytogenes, pure compound eugenol, the main component of cinnamon leaves and clove, showed lower antimicrobial activity than EOs, which was attributed to the influence of the minor components of the EOs. The same was observed with cinnamaldehyde, the main component of cinnamon bark EO. The combinations of vanillin/clove EO and vanillin/cinnamon bark EO showed the most synergistic antimicrobial effect. The combination of the EOs of cinnamon bark/clove and cinnamon bark/cinnamon leaves showed additive effect against L. monocytogenes but indifferent effect against E. coli O157:H7. For L. monocytogenes, the best inhibitory effects were achieved by cinnamon bark EO (85 ppm)/vanillin (910 ppm) and clove EO (121 ppm)/vanillin (691 ppm) combinations. For E. coli, the inhibitory effects of clove EO (104 ppm)/vanillin (1006 ppm) and cinnamon leaves EO (118 ppm)/vanillin (979 ppm) combinations were noteworthy. Some of the tested combinations increased the antimicrobial effect and would allow the effective doses to be reduced, thereby offering possible new applications for food and active food packaging.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1859
Author(s):  
Periyan Durairaju ◽  
Chinnasamy Umarani ◽  
Govindasami Periyasami ◽  
Perumberkandigai Adikesavan Vivekanand ◽  
Mostafizur Rahaman

Herein we report new multiblock chalcone conjugate phthalimide and naphthalimide functionalized copolymers with a topologically novel architecture synthesis using nucleophilic substitution and polycondensation methodology. The structures of the synthesized novolacs were elucidated on the basis of their spectroscopic analysis including FTIR, 1H NMR, and 13C NMR spectroscopy. Further, the number-average and weight-average molecular weights of the novolac polymers were determined by gel permeation chromatography (GPC). We examined the solubility of the synthesized polymers in various organic solvents including CHCl3, CH3CN, THF, H2O, CH3OH, DMSO, and DMF and found they are insoluble in both methanol and water. The novolac polymers were evaluated for their photophysical properties and microbial activities. The investigation of the antimicrobial activities of these polymers reveals significant antimicrobial activity against the pathogens E. coli, S. aureus, C. albicans, and A. niger.


Sign in / Sign up

Export Citation Format

Share Document