scholarly journals New Sensors and Techniques for the Structural Health Monitoring of Propulsion Systems

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Mark Woike ◽  
Ali Abdul-Aziz ◽  
Nikunj Oza ◽  
Bryan Matthews

The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aeronautics and Space Administration (NASA), through the Aviation Safety Program (AVSP), has taken a lead role in the development of new sensor technologies and techniques for the in situ structural health monitoring of gas turbine engines. This paper presents a summary of key results and findings obtained from three different structural health monitoring approaches that have been investigated. This includes evaluating the performance of a novel microwave blade tip clearance sensor; a vibration based crack detection technique using an externally mounted capacitive blade tip clearance sensor; and lastly the results of using data driven anomaly detection algorithms for detecting cracks in a rotating disk.

Author(s):  
Benjamin Cooper ◽  
Andrei Zagrai ◽  
Seth Kessler

As the field of Structural Health Monitoring (SHM) expands to spacecraft applications, the understanding of environmental effects on various SHM techniques becomes paramount. In January of 2013, an SHM payload produced by New Mexico Tech was sent on a high altitude balloon flight to a full altitude of 102,000 ft. The payload contained various SHM experiments including impedance measurements, passive detection (acoustic emission), active interrogation (guided waves), and wireless strain/temperature sensing. The focus of this paper is the effect of altitude on the active SHM experiments. The active experiment utilized a commercial SHM product for generation and reception of elastic waves that enabled wavespeed measurements, loose bolt detection, and crack detection through the full profile of the flight. Definite deviations were observed in the data through the stages of the flight which included a ground, ascent, float, and descent phases. Several elements of the high altitude environment can have an effect on the measurement such as temperature and pressure. The flight data was compared against a ground altitude baseline and heavy emphasis is placed on comparing changes in the data with the temperature profile of the flight. Conclusions are drawn on the effect of altitude on wavespeed of elastic waves, crack detection, and the sensing of a loose bolt.


2020 ◽  
pp. 147592172093951 ◽  
Author(s):  
Zeyu Xiong ◽  
Branko Glisic

Reliable damage detection over large areas of structures can be achieved by spatially quasi-continuous structural health monitoring enabled by two-dimensional sensing sheets. They contain dense arrays of short-gauge sensors, which increases the probability to have sensors in direct contact with damage (e.g. crack opening) and thus identify (i.e. detect, localize, and quantify) it at an early stage. This approach in damage identification is called direct sensing. Although the sensing sheet is a reliable and low-cost technology, the overall structural health monitoring system that is using it might become complex due to large number of sensors. Hence, intentional reduction in number of sensors might be desirable. In addition, malfunction of sensors can occur in real-life settings, which results in unintentional reduction in the number of functioning sensors. In both cases, reduction in the number of (functioning) sensors may lead to lack of performance of sensing sheet. Therefore, it is important to explore the performance of sparse arrays of sensors, in the cases where sensors are not necessarily in direct contact with damage (indirect sensing). The aim of this research is to create a method for optimizing the design of arrays of sensors, that is, to find the smallest number of sensors while maintaining a satisfactory reliability of crack detection and accuracy of damage localization and quantification. To achieve that goal, we first built a phase field finite element model of cracked structure verified by the analytical model to determine the crack existence (detection), and then we used the algorithm of inverse elastostatic problem combined with phase field finite element model to determine the crack length (quantification) and location (localization) by minimizing the difference between the sensor measurements and the phase field finite element model results. In addition, we experimentally validated the method by means of a reduced-scale laboratory test and assessed the accuracy and reliability of indirect sensing.


Author(s):  
Richard Grzybowski ◽  
George Foyt ◽  
Hartwig Knoell ◽  
William Atkinson ◽  
Josef Wenger

This paper describes the development of a Microwave Tip Clearance Measurement System for use in the gas turbine environment Applications for this sensor include basic tip clearance measurements, seal wear measurement and active blade tip clearance control in gas turbine engines. The system being developed was designed for useful operation to temperatures exceeding 1093°F, since only ceramic materials are directly exposed in the gas path. Other advantages of this microwave approach to blade tip clearance sensing include the existence of an inherent self-calibration in the sensor that permits accurate operation despite temperature variations and possible abrasion by the rotating blades. Earlier experiments designed to simulate this abrasion of the sensor head indicated that rubs as deep as 1 mm (40 mils) were easily tolerated. In addition, unlike methods based upon phase measurements, this method is very insensitive to cable vibration and length variations. Finally, this microwave technique is expected to be insensitive to fuel and other engine contamination, since it is based on the measurement of resonant frequencies, which are only slightly affected by moderate values of loss due to contamination.


2013 ◽  
Vol 6 (2) ◽  
pp. 417-423 ◽  
Author(s):  
Jonathan L. Geisheimer ◽  
David Kwapisz ◽  
Thomas Holst ◽  
Michael Hafner

2020 ◽  
Vol 53 (3-4) ◽  
pp. 339-357 ◽  
Author(s):  
Bing Yu ◽  
Hongwei Ke ◽  
Enyu Shen ◽  
Tianhong Zhang

Blade tip clearance is one of the important parameters affecting the performance, safety and stability of a gas turbine engine. However, it is difficult to measure the tip clearance in real time and accurately during the development and test process of an engine. In order to promote the development of tip clearance–measuring technology and the optimal design of the gas turbine engine, some typical measuring methods of tip clearance and a novel measuring method based on AC discharge are introduced. In this article, the significance for measuring tip clearance of an engine is illustrated first. Then, operating principles, characteristics and developments of those typical measurement approaches are introduced. After that, these methods are analyzed, and the particular characteristic of each measuring approach is summarized.


Sign in / Sign up

Export Citation Format

Share Document