scholarly journals A Modified Dynamic Evolving Neural-Fuzzy Approach to Modeling Customer Satisfaction for Affective Design

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
C. K. Kwong ◽  
K. Y. Fung ◽  
Huimin Jiang ◽  
K. Y. Chan ◽  
Kin Wai Michael Siu

Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzyc-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.

2017 ◽  
Author(s):  
Mahdi Zarei

AbstractThis paper presents the development and evaluation of different versions of Neuro-Fuzzy model for prediction of spike discharge patterns. We aim to predict the spike discharge variation using first spike latency and frequency-following interval. In order to study the spike discharge dynamics, we analyzed the Cerebral Cortex data of the cat from [29]. Adaptive Neuro-Fuzzy Inference Systems (ANFIS), Wang and Mendel (WM), Dynamic evolving neural-fuzzy inference system (DENFIS), Hybrid neural Fuzzy Inference System (HyFIS), genetic for lateral tuning and rule selection of linguistic fuzzy system (GFS.LT.RS) and subtractive clustering and fuzzy c-means (SBC) algorithms are applied for data. Among these algorithms, ANFIS and GFS.LT.RS models have better performance. On the other hand, ANFIS and GFS.LT.RS algorithms can be used to predict the spike discharge dynamics as a function of first spike latency and frequency with a higher accuracy compared to other algorithms.


2014 ◽  
Vol 1 (1) ◽  
pp. 60-69 ◽  
Author(s):  
George Atsalakis ◽  
Eleni Chnarogiannaki ◽  
Consantinos Zopounidis

Tourism in Greece plays a major role in the country's economy and an accurate forecasting model for tourism demand is a useful tool, which could affect decision making and planning for the future. This paper answers some questions such as: how did the forecasting techniques evolve over the years, how precise can they be, and in what way can they be used in assessing the demand for tourism? An Adaptive Neuro-Fuzzy Inference System (ANFIS) has been used in making the forecasts. The data used as input for the forecasting models relates to monthly time-series tourist arrivals by air, train, sea and road into Greece from January 1996 until September 2011. 80% of the data has been used to train the forecasting models and the rest to evaluate the models. The performance of the model is achieved by the calculation of some well known statistical errors. The accuracy of the ANFIS model is further compared with two conventional forecasting models: the autoregressive (AR) and autoregressive moving average (ARMA) time-series models. The results were satisfactory even if the collected data were not pleasing enough. The ANFIS performed further compared to the other time-series models. In conclusion, the accuracy of the ANFIS model forecast proved its great importance in tourism demand forecasting.


2010 ◽  
Vol 426-427 ◽  
pp. 216-219
Author(s):  
C.Y. Ma ◽  
D.L. Zhang ◽  
Zhi Wang ◽  
G.X. Li ◽  
J.J. Tang

On basis of analyzing the principles and structure of adaptive neural fuzzy inference system (ANFIS), this thesis used subtractive clustering algorithm to get fuzzy inference rule numbers and confirm the network structure. In addition, the thesis built ANFIS model adapted to coal mining workface stray current security prediction. The model can do workface stray current security prediction by the easy measured parameters of non-production field. If the stray current exceeds standard, the system will alarm on time. Moreover, the thesis compared accuracy rate of the security prediction results under different membership functions. The results indicate that the prediction accuracy of ANFIS based on subtractive clustering is the highest and its computing speed is faster. The prediction results to practical project data indicate that stray current security prediction based on ANFIS has favorable practicality and effect.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Ozgur Kisi ◽  
Iman Mansouri ◽  
Jong Wan Hu

Evaporation estimation is very essential for planning and development of water resources. The study investigates the ability of new method, dynamic evolving neural-fuzzy inference system (DENFIS), in modeling monthly pan evaporation. Monthly maximum and minimum temperatures, solar radiation, wind speed, and relative humidity data obtained from two stations located in Turkey are used as inputs to the models. The results of DENFIS method were compared with the classical adaptive neural-fuzzy inference system (ANFIS) by using root mean square error (RMSE), mean absolute relative error (MARE), and Nash-Sutcliffe Coefficient (NS) statistics. Cross validation was applied for better comparison of the models. The results indicated that DENFIS models increased the accuracy of ANFIS models to some extent. RMSE, MARE, and NS of the ANFIS model were increased by 11.13, 11.45, and 6.83% for the Antalya station and 20.11, 12.94%, and 8.29% for the Antakya station using DENFIS.


2014 ◽  
Vol 663 ◽  
pp. 203-207 ◽  
Author(s):  
Mohammadjavad Zeinali ◽  
Saiful Amri Mazlan ◽  
Abdul Yasser Abd Fatah ◽  
Hairi Zamzuri

Magnetorheological damper is a controllable device in semi-active suspension system to absorb unwanted movement. The accuracy of magnetorheological damper model will affect performance of the control system. In this paper, a combination of genetic algorithm (GA) and adaptive-network-based fuzzy inference system (ANFIS) approaches is utilized to model the magnetorheological damper using experimental results. GA algorithm is implemented to modify the weights of the trained ANFIS model. The proposed method is compared with ANFIS and artificial neural network (ANN) methods to evaluate the prediction performance. The result illustrates that the proposed GA-weighted adaptive neuro-fuzzy model has successfully predicted the magnetorheological damper behaviour and outperformed other compared methods.


2021 ◽  
Vol 11 (16) ◽  
pp. 7766
Author(s):  
Dewang Chen ◽  
Jijie Cai ◽  
Yunhu Huang ◽  
Yisheng Lv

Fuzzy systems (FSs) are popular and interpretable machine learning methods, represented by the adaptive neuro-fuzzy inference system (ANFIS). However, they have difficulty dealing with high-dimensional data due to the curse of dimensionality. To effectively handle high-dimensional data and ensure optimal performance, this paper presents a deep neural fuzzy system (DNFS) based on the subtractive clustering-based ANFIS (SC-ANFIS). Inspired by deep learning, the SC-ANFIS is proposed and adopted as a submodule to construct the DNFS in a bottom-up way. Through the ensemble learning and hierarchical learning of submodules, DNFS can not only achieve faster convergence, but also complete the computation in a reasonable time with high accuracy and interpretability. By adjusting the deep structure and the parameters of the DNFS, the performance can be improved further. This paper also performed a profound study of the structure and the combination of the submodule inputs for the DNFS. Experimental results on five regression datasets with various dimensionality demonstrated that the proposed DNFS can not only solve the curse of dimensionality, but also achieve higher accuracy, less complexity, and better interpretability than previous FSs. The superiority of the DNFS is also validated over other recent algorithms especially when the dimensionality of the data is higher. Furthermore, the DNFS built with five inputs for each submodule and two inputs shared between adjacent submodules had the best performance. The performance of the DNFS can be improved by distributing the features with high correlation with the output to each submodule. Given the results of the current study, it is expected that the DNFS will be used to solve general high-dimensional regression problems efficiently with high accuracy and better interpretability.


Author(s):  
YUANYUAN CHAI ◽  
LIMIN JIA

In order to solve the defects of consequent part expression in ANFIS model and several shortcomings in FIS, this paper presents a Choquet Integral–OWA based Fuzzy Inference System, known as AggFIS. This model has advantages in consequent part of fuzzy rule, universal expression of fuzzy inference operator and importance factor of each criteria and each rule, which is trying to establish fuzzy inference system that can fully reflect the essence of fuzzy logic and human thinking pattern. If we combine AggFIS with a feed forward-type neural network according to the basic principles of fuzzy neural network, we can obtain Choquet Integral–OWA based Adaptive Neural Fuzzy Inference System, which is named Agg-ANFIS. We apply this Agg-ANFIS model into the evaluation of traffic level of service. The experimental results show that Choquet Integral–OWA based Adaptive Neural Fuzzy Inference System (Agg-ANFIS) is a universal approximator because of its infinite approximating capability by training and can be used in complex systems modeling, analysis and prediction.


2017 ◽  
Vol 19 (3) ◽  
pp. 385-404 ◽  
Author(s):  
Morteza Zanganeh

Prediction of wave parameters is of great importance in the design of marine structures. In this paper, two shortcomings with the adaptive network-based fuzzy inference system (ANFIS) model for prediction of wave parameters are remedied by employing a genetic algorithm (GA). The first shortcoming in the ANFIS model goes back to its problem for automatic extraction of fuzzy IF-THEN rules and the second one is related to its gradient-based nature for tuning the antecedent and consequent parameters of fuzzy IF-THEN rules. To deal with these shortcomings, in this study a combined FIS and GA model is developed in which the capability of the GA as an evolutionary algorithm is used for simultaneous optimization of the subtractive clustering parameters and the antecedent and consequent parameters of fuzzy IF-THEN rules. Following the development of the combined model, this model is used to predict wave parameters, i.e., significant wave height and peak spectral period at Lake Michigan. The obtained results show that the developed model outperforms the ANFIS model and the Coastal Engineering Manual (CEM) method to estimate the function representing the generation process of the wind-driven waves.


Sign in / Sign up

Export Citation Format

Share Document