A GA-Weighted Adaptive Neuro-Fuzzy Model to Predict the Behaviour of Magnetorheological Damper

2014 ◽  
Vol 663 ◽  
pp. 203-207 ◽  
Author(s):  
Mohammadjavad Zeinali ◽  
Saiful Amri Mazlan ◽  
Abdul Yasser Abd Fatah ◽  
Hairi Zamzuri

Magnetorheological damper is a controllable device in semi-active suspension system to absorb unwanted movement. The accuracy of magnetorheological damper model will affect performance of the control system. In this paper, a combination of genetic algorithm (GA) and adaptive-network-based fuzzy inference system (ANFIS) approaches is utilized to model the magnetorheological damper using experimental results. GA algorithm is implemented to modify the weights of the trained ANFIS model. The proposed method is compared with ANFIS and artificial neural network (ANN) methods to evaluate the prediction performance. The result illustrates that the proposed GA-weighted adaptive neuro-fuzzy model has successfully predicted the magnetorheological damper behaviour and outperformed other compared methods.

2021 ◽  
Author(s):  
Musa Alhaji Ibrahim ◽  
Yusuf Şahin ◽  
Auwal Ibrahim ◽  
Auwalu Yusuf Gidado ◽  
Mukhtar Nuhu Yahya

Lately, artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) models have been recognized as potential and good tools for mathematical modeling of complex and nonlinear behavior of specific wear rate (SWR) of composite materials. In this study, modeling and prediction of specific wear rate of polytetraflouroethylene (PTFE) composites using FFNN and ANFIS models were examined. The performances of the models were compared with conventional multilinear regression (MLR) model. To establish the proper choice of input variables, a sensitivity analysis was performed to determine the most influential parameter on the SWR. The modeling and prediction performance results showed that FFNN and ANFIS models outperformed that of the MLR model by 45.36% and 45.80%, respectively. The sensitivity analysis findings revealed that the volume fraction of reinforcement and density of the composites and sliding distance were the most and more influential parameters, respectively. The goodness of fit of the ANN and ANFIS models was further checked using t-test at 5% level of significance and the results proved that ANN and ANFIS models are powerful and efficient tools in dealing with complex and nonlinear behavior of SWR of the PTFE composites.


2014 ◽  
Vol 1 (1) ◽  
pp. 60-69 ◽  
Author(s):  
George Atsalakis ◽  
Eleni Chnarogiannaki ◽  
Consantinos Zopounidis

Tourism in Greece plays a major role in the country's economy and an accurate forecasting model for tourism demand is a useful tool, which could affect decision making and planning for the future. This paper answers some questions such as: how did the forecasting techniques evolve over the years, how precise can they be, and in what way can they be used in assessing the demand for tourism? An Adaptive Neuro-Fuzzy Inference System (ANFIS) has been used in making the forecasts. The data used as input for the forecasting models relates to monthly time-series tourist arrivals by air, train, sea and road into Greece from January 1996 until September 2011. 80% of the data has been used to train the forecasting models and the rest to evaluate the models. The performance of the model is achieved by the calculation of some well known statistical errors. The accuracy of the ANFIS model is further compared with two conventional forecasting models: the autoregressive (AR) and autoregressive moving average (ARMA) time-series models. The results were satisfactory even if the collected data were not pleasing enough. The ANFIS performed further compared to the other time-series models. In conclusion, the accuracy of the ANFIS model forecast proved its great importance in tourism demand forecasting.


2016 ◽  
Vol 14 (2) ◽  
pp. 209 ◽  
Author(s):  
Dalibor Petković ◽  
Milan Gocić ◽  
Shahaboddin Shamshirband

The paper investigates the accuracy of an adaptive neuro-fuzzy computing technique in precipitation estimation. The monthly precipitation data from 29 synoptic stations in Serbia during 1946-2012 are used as case studies. Even though a number of mathematical functions have been proposed for modeling the precipitation estimation, these models still suffer from the disadvantages such as their being very demanding in terms of calculation time. Artificial neural network (ANN) can be used as an alternative to the analytical approach since it offers advantages such as no required knowledge of internal system parameters, compact solution for multi-variable problems and fast calculation. Due to its being a crucial problem, this paper presents a process constructed so as to simulate precipitation with an adaptive neuro-fuzzy inference (ANFIS) method. ANFIS is a specific type of the ANN family and shows very good learning and prediction capabilities, which makes it an efficient tool for dealing with encountered uncertainties in any system such as precipitation. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system (FIS). This intelligent algorithm is implemented using Matlab/Simulink and the performances are investigated.  The simulation results presented in this paper show the effectiveness of the developed method.


2020 ◽  
Vol 1 (1) ◽  
pp. 24-32
Author(s):  
Machrus Ali ◽  
Ruslan Hidayat ◽  
Iwan Cahyono

Adaptive Neuro-Fuzzy Inference System (ANFIS) adalah penggabungan mekanisme Fuzzy Inference System (FIS) dan Neural Network (NN) yang digambarkan dalam arsitektur jaringan syaraf. Sistem inference fuzzy yang digunakan adalah sistem inference fuzzy model Tagaki-Sugeno-Kang (TSK) orde satu dengan pertimbangan kesederhanaan dan kemudahan komputasi. Pada penelitian ini sebagai pembanding didesain tanpa control, desain dengan PID standart, desain dengan Fuzzy Login Controller (FLC), dan ANFIS controller. Dalam desain penelitian ini yang dikontrol adalah ball valve electric pada tangki agar debit air yang keluar dari tangki sesuai dengan yang dibutuhkan dalam proses produksi dengan menggunakan empat control. Dari simulasi diapatkan bahwa Dsain Water Level yang paling baik pada percobaan ini adalah menggunakan metode ANFIS dengan nilai overshot dan undershot terkecil pada water level dan output flow. Sehingga desain ini bias dipakai acuan untuk menghasilkan control aliran air sesuai dengan harapan yang diinginkan. Hasil simulasi ini akan dibandingkan lagi dengan metode kecerdasan buatan yang lain, sehingga adan didapatkan hasil yang paling sesuai.


2021 ◽  
pp. 181-189
Author(s):  
Wayan Firdaus Mahmudy ◽  
Aji Prasetya Wibawa ◽  
Nadia Roosmalita Sari ◽  
H. Haviluddin ◽  
P. Purnawansyah

Artificial Neural Network (ANN) is recognized as one of effective forecasting engines for various business fields. This approach fits well with non-linear data. In fact, it is a black box system with random weighting, which is hard to train. One way to improve its performance is by hybridizing ANN with other methods. In this paper, a hybrid approach, Genetic Algorithm-Neural Fuzzy System (GA-NFS) is proposed to predict the number of unique visitors of an online journal website. The neural network weight is precisely determined using GA. Afterwards, the best weight has been used for testing data and processed using Sugeno Fuzzy Inference System (FIS) for time-series forecasting. Based on experiment, GA-NFS have been produced accuracy with 0.989 of root mean square error (RMSE) that is lower than the RMSE of a common NFS (2,004). This may indicate that the GA based weighting is able to improve the NFS performance on forecasting the number of journal unique visitors.


Sign in / Sign up

Export Citation Format

Share Document