scholarly journals Correlation between Shear Wave Velocity and Porosity in Porous Solids and Rocks

2013 ◽  
Vol 2013 ◽  
pp. 1-3
Author(s):  
J. Kováčik ◽  
Š. Emmer

The shear wave velocity dependence on porosity was modelled using percolation theory model for the shear modulus porosity dependence. The obtained model is not a power law dependence (no simple scaling with porosity), but a more complex equation. Control parameters of this equation are shear wave velocity of bulk solid, percolation threshold of the material and the characteristic power law exponent for shear modulus porosity dependence. This model is suitable for all porous materials, mortars and porous rocks filled with liquid or gas. In the case of pores filled with gas the model can be further simplified: The term for the ratio of the gas density to the density of solid material can be omitted in the denominator (the ratio is usually in the range of (10−4, 10−3) for all solids). This simplified equation was then tested on the experimental data set for porous ZnO filled with air. Due to lack of reasonable data the scientists are encouraged to test the validity of proposed model using their experimental data.

2019 ◽  
Vol 37 (3) ◽  
pp. 263
Author(s):  
Breno Padovezi Rocha ◽  
Heraldo Luiz Giacheti

ABSTRACT. The shear wave velocity (Vs) is an important geotechnical parameter to be used in dynamic problems (e.g. earthquakes and vibration problems) as well as in static deformation analysis such as excavations and foundation engineering design. There are several in situ seismic tests to determine Vs such as the crosshole and the downhole techniques, as well as hybrid tests (e.g. seismic dilatometer – SDMT). This paper presents crosshole, downhole and SDMT tests carried out in a typical tropical soil profile from Brazil. Advantages and limitations regarding the test procedures and interpretation are briefly presented and differences observed among Vs determined by these techniques are discussed. Shear wave velocities (Vs) estimated from the crosshole, downhole and SDMT tests ranging from 194 to 370 m/s. The shear wave velocity suggests that the experimental site could be divided into two strata, which are in agreement with soil profile description. The maximum shear modulus (G0) calculated from the Vs by theory of elasticity can be used to show the investigated tropical soil is a typical unusual geomaterial. This article also emphasizes that the SDMT is a useful test for site investigation since it allows a great means for profiling geostratigraphy and soil engineering properties during routine site investigation as well as for dynamics problems. Keywords: shear wave velocity, maximum shear modulus, crosshole, downhole, SDMT.RESUMO. A velocidade de onda cisalhante (Vs) é um parâmetro geotécnico empregado em análises dinâmicas (terremotos e problemas de vibração), bem como em análises estáticas (escavações e projeto de fundações). Existem vários ensaios sísmicos de campo para a determinação de Vs, entre eles as técnicas crosshole e downhole, e os ensaios híbridos (por exemplo, dilatômetro sísmico – SDMT). Este artigo apresenta os ensaios crosshole, downhole e SDMT realizados em um perfil típico de solo tropical do Brasil, as vantagens e limitações dos procedimentos de ensaio e de interpretação são brevemente apresentadas, e as diferenças observadas entre os valores de Vs determinados pelas diferentes técnicas são discutidas. Os perfis de Vs determinados pelas diferentes técnicas variaram de 194 a 370 m/s. A velocidade da onda cisalhante sugere que o campo experimental investigado pode ser dividido em dois horizontes, os quais estão de acordo com a descrição do perfil do solo estudado. O módulo de cisalhamento máximo (G0), calculado a partir de Vs pela teoria da elasticidade, pode ser utilizado para demonstrar o comportamento não convencional do solo investigado. Este artigo também enfatiza que o SDMT é um ensaio geotécnico útil para a investigação geotécnica do subsolo, uma vez que permite a definição do perfil estratigráfico e a estimativa de parâmetros estáticos e dinâmicos de um projeto.Palavras-chave: velocidade de onda cisalhante, módulo de cisalhamento máximo, crosshole, downhole, SDMT.


2015 ◽  
Vol 58 (3) ◽  
Author(s):  
Azam Ghazi ◽  
Naser Hafezi Moghadas ◽  
Hosein Sadeghi ◽  
Mohamad Ghafoori ◽  
Gholam Reza Lashkaripur

<p>Shear wave velocity, V<sub>s</sub>, is one of the important input parameters in seismic response analysis of the ground. Various methods have been examined to measure the soil V<sub>s</sub> directly. Direct measurement of V<sub>s</sub> is time consuming and costly, therefore many researchers have been trying to update empirical relationships between V<sub>s</sub> and other geotechnical properties of soils such as SPT Blow count, SPT-N. In this study the existence of a statistical relationship between V<sub>s</sub>, SPT-N<sub>60 </sub>and vertical effective stress, signa<sub>nu</sub>´, is investigated. Data set we used in this study was gathered from geotechnical and geophysical investigations reports. The data have been extracted from more than 130 numbers of geotechnical boreholes from different parts of Mashhad city. In each borehole the V<sub>s</sub> has been measured by downhole method at two meter intervals. The SPT test also has performed at the same depth. Finally relationships were developed by regression analysis for gravels, sands and fine grain soils. The proposed relationships indicate that V<sub>s</sub> is strongly dependent on signa<sub>nu</sub>´. In this paper the effect of fine percent also is considered on the V<sub>s</sub> estimation.</p>


2019 ◽  
Vol 92 ◽  
pp. 04002
Author(s):  
Litong Ji ◽  
Abraham C.F. Chiu ◽  
Lu Ma ◽  
Chao Jian

This article presents a laboratory study on the maximum shear modulus of a THF hydrate bearing calcareous sand (CS)–fines mixture. The maximum shear modulus was inferred from the shear wave velocity measured from the bender elements installed in a temperature-controlled triaxial apparatus. The specimen preparation procedures were specially designed to mimic the hydrate formation inside the internal pores of CS. A trial test was conducted to validate whether the shear wave velocity is a feasible parameter to monitor the formation and dissociation of hydrate in the CS-fines mixture. Based on the bender element test results, hydrate has a more profound effect than confining pressure on enhancing the maximum shear modulus of CS-fines mixture.


Geophysics ◽  
2009 ◽  
Vol 74 (3) ◽  
pp. E135-E147 ◽  
Author(s):  
Gregor T. Baechle ◽  
Gregor P. Eberli ◽  
Ralf J. Weger ◽  
Jose Luis Massaferro

To assess saturation effects on acoustic properties in carbonates, we measure ultrasonic velocity on 38 limestone samples whose porosity ranges from 5% to 30% under dry and water-saturated conditions. Complete saturation of the pore space with water causes an increase and decrease in compressional- and shear-wave velocity as well as significant changes in the shear moduli. Compressional velocities of most water-saturated samples are up to [Formula: see text] higher than the velocities of the dry samples. Some show no change, and a few even show a decrease in velocity. Shear-wave velocity [Formula: see text] generally decreases, but nine samples show an increase of up to [Formula: see text]. Water saturation decreases the shear modulus by up to [Formula: see text] in some samples and increases it by up to [Formula: see text] in others. The average increase in the shear modulus with water saturation is [Formula: see text]; the average decrease is [Formula: see text]. The [Formula: see text] ratio shows an overall increase with water saturation. In particular, rocks displaying shear weakening have distinctly higher [Formula: see text] ratios. Grainstone samples with high amounts of microporosity and interparticle macro-pores preferentially show shear weakening, whereas recrystallized limestones are prone to increase shear strengths with water saturation. The observed shear weakening indicates that a rock-fluid interaction occurs with water saturation, which violates one of the assumptions in Gassmann’s theory. We find a positive correlation between changes in shear modulus and the inability of Gassmann’s theory to predict velocities of water-saturated samples at high frequencies. Velocities of water-saturated samples predicted by Gassmann’s equation often exceed measured values by as much as [Formula: see text] for samples exhibiting shear weakening. In samples showing shear strengthening, Gassmann-predicted velocity values are as much as [Formula: see text] lower than measured values. In 66% of samples, Gassmann-predicted velocities show a misfit to measured water-saturated P-wave velocities. This discrepancy between measured and Gassmann-predicted velocity is not caused solely by velocity dispersion but also by rock-fluid interaction related to the pore structure of carbonates. Thus, a pore analysis should be conducted to assess shear-moduli changes and the resultant uncertainty for amplitude variation with offset analyses and velocity prediction using Gassmann’s theory.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Yan Yu ◽  
Walter J. Silva ◽  
Bob Darragh ◽  
Xiaojun Li

Several methods were used to estimateVs30from site profiles with borehole depths of about 20 m for the strong-motion stations located in Southwest China. The methods implemented include extrapolation (constant and gradient), Geomatrix Site Classification correlation with shear-wave velocity, and remote sensing (terrain and topography). The gradient extrapolation is the preferred choice of this study for sites with shear-wave velocity profile data. However, it is noted that the coefficients derived from the California data set are not applicable to sites in Southwest China. Due to the scarcity of borehole profiles data with depth of more than 30 m in Southwest China, 73 Kiknet profiles were used to generate new coefficients for gradient extrapolation. Fortunately, these coefficients provide a reasonable estimate ofVs30for sites in Southwest China. This study showedVs30could be estimated by the time-average shear-wave velocity (average slowness) of only 10 meters of depth. Furthermore, a medianVs30estimate based upon Geomatrix Classification is derived from the results of the gradient extrapolation using a regional calibration of the Geomatrix Classification withVs30. The results of this study can be applied to assignVs30to the sites without borehole data in Southwest China.


Author(s):  
Katarzyna Markowska-Lech ◽  
Mariusz Lech ◽  
Marek Bajda ◽  
Alojzy Szymański

Abstract Small strain stiffness in overconsolidated Pliocene clays. A huge development of technical infrastructure, including the construction of many high-rise buildings, roads, railroads and extension of subway lines, took place over the recent years in Poland. Therefore, numerous planned investment projects require geotechnical data documenting the variation of soil parameters found in the subsoil. The shear wave velocity is one of the most important input parameters to represent the stiffness of the soil deposits. This paper focuses on the methods and devices using measurements of the shear wave velocity to estimate the initial shear modulus in cohesive soil. It is preferable to measure VS by in situ wave propagation tests, however it is often economically not feasible in all regions of Poland. Hence, a reliable correlation between shear wave velocity and parameters measured in triaxial cell or static penetration parameters would be a considerable advantage. This study shows results obtained from the bender elements tests and field techniques - seismic cone penetration test and seismic flat dilatometer, performed on overconsolidated cohesive soils in Warsaw. On the basis of the test results possible correlations between shear wave velocity (initial shear modulus), mean effective stress and void ratio are considered and four original empirical relationships are proposed. Moreover, the proposed formulas by two different techniques using triaxial apparatus and also RCPT cone were examined. The proposed formulas show a reasonable agreement with direct shear wave velocity profiles for clays and might be incorporated into routine laboratory and field practice


Sign in / Sign up

Export Citation Format

Share Document