scholarly journals Experimental Investigations of a Krypton Stationary Plasma Thruster

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
A. I. Bugrova ◽  
A. M. Bishaev ◽  
A. V. Desyatskov ◽  
M. V. Kozintseva ◽  
A. S. Lipatov ◽  
...  

Stationary plasma thrusters are attractive electric propulsion systems for spacecrafts. The usual propellant is xenon. Among the other suggested propellants, krypton could be one of the best candidates. Most studies have been carried out with a Hall effect thruster previously designed for xenon. The ATON A-3 developed by MSTU MIREA (Moscow) initially defined for xenon has been optimized for krypton. The stable high-performance ATON A-3 operation in Kr has been achieved after optimization of its magnetic field configuration and its optimization in different parameters: length and width of the channel, buffer volume dimensions, mode of the cathode operation, and input parameters. For a voltage of 400 V and the anode mass flow rate of 2.5 mg/s the anode efficiency reaches 60% and the specific impulse reaches 2900 s under A-3 operating with Kr. The achieved performances under operation A-3 with Kr are presented and compared with performances obtained with Xe.

Author(s):  
Nicolas Bellomo ◽  
Mirko Magarotto ◽  
Marco Manente ◽  
Fabio Trezzolani ◽  
Riccardo Mantellato ◽  
...  

AbstractREGULUS is an Iodine-based electric propulsion system. It has been designed and manufactured at the Italian company Technology for Propulsion and Innovation SpA (T4i). REGULUS integrates the Magnetically Enhanced Plasma Thruster (MEPT) and its subsystems, namely electronics, fluidic, and thermo-structural in a volume of 1.5 U. The mass envelope is 2.5 kg, including propellant. REGULUS targets CubeSat platforms larger than 6 U and CubeSat carriers. A thrust T = 0.60 mN and a specific impulse Isp = 600 s are achieved with an input power of P = 50 W; the nominal total impulse is Itot = 3000 Ns. REGULUS has been integrated on-board of the UniSat-7 satellite and its In-orbit Demonstration (IoD) is currently ongoing. The principal topics addressed in this work are: (i) design of REGULUS, (ii) comparison of the propulsive performance obtained operating the MEPT with different propellants, namely Xenon and Iodine, (iii) qualification and acceptance tests, (iv) plume analysis, (v) the IoD.


Nukleonika ◽  
2016 ◽  
Vol 61 (2) ◽  
pp. 213-218
Author(s):  
Agnieszka Szelecka

Abstract Plasma engines are used for space propulsion as an alternative to chemical thrusters. Due to the high exhaust velocity of the propellant, they are more efficient for long-distance interplanetary space missions than their conventional counterparts. An advanced laboratory of plasma space propulsion (PlaNS) at the Institute of Plasma Physics and Laser Microfusion (IPPLM) specializes in designing and testing various electric propulsion devices. Inside of a special vacuum chamber with three performance pumps, an environment similar to the one that prevails in space is created. An innovative Micro Pulsed Plasma Thruster (LμPPT) with liquid propellant was built at the laboratory. Now it is used to test the second prototype of Hall effect thruster (HET) operating on krypton propellant. Meantime, an improved prototype of krypton Hall thruster is constructed.


2018 ◽  
Vol 36 (1) ◽  
pp. 105-114 ◽  
Author(s):  
Jacek Kurzyna ◽  
Maciej Jakubczak ◽  
Agnieszka Szelecka ◽  
Käthe Dannenmayer

AbstractThe Institute of Plasma Physics and Laser Microfusion's (IPPLM) Hall effect thruster (Krypton Large IMpulse Thruster, KLIMT) is a 500 W class plasma engine with a mean diameter of discharge channel of 42 mm. KLIMT was developed within ESA/PECS project aiming to provide relatively small thruster for satellites that would be able to effectively operate with krypton propellant. Being several times less expensive than xenon, which is regarded as a propellant of choice for electric propulsion of electrostatic type, krypton since years has been suggested as an attractive alternative. In this paper, a design as well as performance tests of the laboratory model of KLIMT are discussed. It is shown that precise adjustment of magnetic field topography results in the stable operation of the thruster in wide range of operating conditions providing similar thrust and specific impulse production for both propellants. Maximum thrust produced with the use of xenon and krypton reached about 16–17 mN for mass flow rate of 1.15–1.2 mg/s resulting in specific impulse in the range of 1300–1500 s (13–15 km/s). However, for krypton the anode efficiency drops by ~10% in comparison with xenon. For krypton plasma beam divergence as measured by an average half-angle with respect to the beam axis was found to remain within the range of 19–23° for the whole set of the examined operating conditions. The reported characteristics are reasonable for Hall thruster of the discussed size and power.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
M. Tajmar ◽  
C. A. Scharlemann

The increasing application of microsatellites (from 10 kg up to 100 kg) as well as CubeSats for a rising number of various missions demands the development of miniaturized propulsion systems. Fotec and The University of Applied Sciences at Wiener Neustadt is developing a number of micropropulsion technologies including both electric and chemical thrusters targeting high performance at small scales. Our electric propulsion developments include a series of FEEP (field emission electric propulsion) thrusters, of which the thrust ranges fromμN to mN level. The thrusters are highly integrated into clusters of indium liquid-metal-ion sources that can provide ultralow thrust noise and long-term stability. We are also developing a micro PPT thruster that enables pointing capabilities for CubeSats. For chemical thrusters, we are developing novel micromonopropellant thrusters with several hundred mN as well as a 1–3 N bipropellant microrocket engine using green propellants and high specific impulse performance. This paper will give an overview of our micropropulsion developments at Fotec, highlighting performance as well as possible applications.


Author(s):  
Boris A. Sokolov ◽  
Pavel A. Shcherbina ◽  
Ivan B. Sishko ◽  
Aleksandr V. Shipovskiy Aleksandr ◽  
Aleksandr A. Lyapin ◽  
...  

The paper demonstrates the feasibility of using iodine as propellant for thrusters with closed electron drift and its economic viability. It describes a test setup for running experiments. It provides the results of experimental studies of the stationary plasma thruster using iodine as its propellant with xenon gas-passage hollow cathode, as well as of the operational mode of the thruster where a mixture of xenon and iodine is used. During tests gas dynamic and electrical properties of the thruster were analyzed. Thermal conditions in the iodine storage and supply system were studied. Conclusions were drawn on how the test object could be improved and upgraded. The paper describes the option to use a thermionic non-flow cathode as the compensator cathode for the operation of the iodine thruster. The paper provides the results of an experimental study of the prototype non-flow compensator cathode in diode mode. Based on the results of the studies an experimental facility was built for testing a thruster with non-flow compensator cathode. Key words: cathode, compensator cathode, thruster with closed electron drift, stationary plasma thruster, iodine.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazunori Takahashi

AbstractDevelopment of a magnetic nozzle radiofrequency (rf) plasma thruster has been one of challenging topics in space electric propulsion technologies. The thruster typically consists of an rf plasma source and a magnetic nozzle, where the plasma produced inside the source is transported along the magnetic field and expands in the magnetic nozzle. An imparted thrust is significantly affected by the rf power coupling for the plasma production, the plasma transport, the plasma loss to the wall, and the plasma acceleration process in the magnetic nozzle. The rf power transfer efficiency and the imparted thrust are assessed for two types of rf antennas exciting azimuthal mode number of $$m=+1$$ m = + 1 and $$m=0$$ m = 0 , where propellant argon gas is introduced from the upstream of the thruster source tube. The rf power transfer efficiency and the density measured at the radial center for the $$m=+1$$ m = + 1 mode antenna are higher than those for the $$m=0$$ m = 0 mode antenna, while a larger thrust is obtained for the $$m=0$$ m = 0 mode antenna. Two-dimensional plume characterization suggests that the lowered performance for the $$m=+1$$ m = + 1 mode case is due to the plasma production at the radial center, where contribution on a thrust exerted to the magnetic nozzle is weak due to the absence of the radial magnetic field. Subsequently, the configuration is modified so as to introduce the propellant gas near the thruster exit for the $$m=0$$ m = 0 mode configuration and the thruster efficiency approaching twenty percent is successfully obtained, being highest to date in the kW-class magnetic nozzle rf plasma thrusters.


Sign in / Sign up

Export Citation Format

Share Document