scholarly journals Molecular Cloning, Modeling, and Characterization of Type 2 Metallothionein from Plantago ovata Forsk

Sequencing ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Amitava Moulick ◽  
Debashis Mukhopadhyay ◽  
Shonima Talapatra ◽  
Nirmalya Ghoshal ◽  
Sarmistha Sen Raychaudhuri

Plantago ovata Forsk is a medicinally important plant. Metallothioneins are cysteine rich proteins involved in the detoxification of heavy metals. Molecular cloning and modeling of MT from P. ovata is not reported yet. The present investigation will describe the isolation, structure prediction, characterization, and expression under copper stress of type 2 metallothionein (MT2) from this species. The gene of the protein comprises three exons and two introns. The deduced protein sequence contains 81 amino acids with a calculated molecular weight of about 8.1 kDa and a theoretical pI value of 4.77. The transcript level of this protein was increased in response to copper stress. Homology modeling was used to construct a three-dimensional structure of P. ovata MT2. The 3D structure model of P. ovata MT2 will provide a significant clue for further structural and functional study of this protein.

2015 ◽  
Vol 25 (2) ◽  
pp. 155-167 ◽  
Author(s):  
Kasi Viswanath Kotapati ◽  
Bhagath Kumar Palaka ◽  
Anithamma Kandukuri ◽  
Ramachandra Reddy Pamuru ◽  
Veeranjaneya Reddy Lebaka ◽  
...  

2021 ◽  
Author(s):  
Julita Gumna ◽  
Maciej Antczak ◽  
Ryszard Walenty Adamiak ◽  
Janusz Marek Bujnicki ◽  
Shi-Jie Chen ◽  
...  

The outbreak of the COVID-19 pandemic has led to intensive studies of both the structure and replication mechanism of SARS-CoV-2. In spite of some secondary structure experiments being carried out, the 3D structure of the key functional regions of the viral RNA has not yet been well understood. At the beginning of COVID-19 breakout, the RNA-Puzzles community attempted to envisage the three-dimensional structure of 5′- and 3′-Un-Translated Regions (UTRs) of the SARS-CoV-2 genome. Here, we report the results of this prediction challenge, presenting the methodologies developed by six participating groups and discussing 100 RNA 3D models (60 models of 5′-UTR and 40 of 3′-UTR) predicted through applying both human experts and automated server approaches. We describe the original protocol for the reference-free comparative analysis of RNA 3D structures designed especially for this challenge. We elaborate on the deduced consensus structure and the reliability of the predicted structural motifs. All the computationally simulated models, as well as the development and the testing of computational tools dedicated to 3D structure analysis, are available for further study.


RNA ◽  
2012 ◽  
Vol 18 (4) ◽  
pp. 610-625 ◽  
Author(s):  
J. A. Cruz ◽  
M.-F. Blanchet ◽  
M. Boniecki ◽  
J. M. Bujnicki ◽  
S.-J. Chen ◽  
...  

1981 ◽  
Vol 195 (1) ◽  
pp. 31-40 ◽  
Author(s):  
F E Cohen ◽  
J Novotný ◽  
M J E Sternberg ◽  
D G Campbell ◽  
A F Williams

The Thy-1 membrane glycoprotein from rat brain is shown to have structural and sequence homologies with immunoglobulin (Ig) domains on the basis of the following evidence. 1. The two disulphide bonds of Thy-1 are both consistent with the Ig-fold. 2. The molecule contains extensive beta-structure as shown by the c.d. spectrum. 3. Secondary structure prediction locates beta-strands along the sequence in a manner consistent with the Ig-fold. 4. On the basis of rules derived from known beta-sheet structures, a three-dimensional structure with the Ig-fold is predicted as favourable for Thy-1. 5. Sequences in the proposed beta-strands of Thy-1 and known beta-strands of Ig domains show significant sequence homology. This homology is statistically more significant than for the comparison of proposed beta-strand sequences of beta 2-microglobulin with Ig domains. An hypothesis is presented for the possible functional significance of an evolutionary relationship between Thy-1 and Ig. It is suggested that both Thy-1 and Ig evolved from primitive molecules, with an Ig fold, which mediated cell--cell interactions. The present-day role of Thy-1 may be similar to that of the primitive domain.


Author(s):  
YU ZHANG ◽  
YU PING GUAN ◽  
RUI XIN HUANG

AbstractOcean striations are composed of alternating quasi-zonal band-like flows; this kind of organized structure of currents be found in all world’s oceans and seas. Previous studies have mainly been focused on the mechanisms of their generation and propagation. This study uses the spatial high-pass filtering to obtain the three-dimensional structure of ocean striations in the North Pacific in both the z-coordinate and σ-coordinate based on 10-yr averaged SODA3 data. First, we identify an ideal-fluid potential density domain where the striations are undisturbed by the surface forcing and boundary effects. Second, using the isopycnal layer analysis, we show that on isopycnal surfaces the orientations of striations nearly follow the potential vorticity (PV) contours, while in the meridional-vertical plane the central positions of striations are generally aligned with the latitude of zero gradient of the relative PV. Our analysis provides a simple dynamical interpretation and better understanding for the role of ocean striations.


Author(s):  
Arun G. Ingale

To predict the structure of protein from a primary amino acid sequence is computationally difficult. An investigation of the methods and algorithms used to predict protein structure and a thorough knowledge of the function and structure of proteins are critical for the advancement of biology and the life sciences as well as the development of better drugs, higher-yield crops, and even synthetic bio-fuels. To that end, this chapter sheds light on the methods used for protein structure prediction. This chapter covers the applications of modeled protein structures and unravels the relationship between pure sequence information and three-dimensional structure, which continues to be one of the greatest challenges in molecular biology. With this resource, it presents an all-encompassing examination of the problems, methods, tools, servers, databases, and applications of protein structure prediction, giving unique insight into the future applications of the modeled protein structures. In this chapter, current protein structure prediction methods are reviewed for a milieu on structure prediction, the prediction of structural fundamentals, tertiary structure prediction, and functional imminent. The basic ideas and advances of these directions are discussed in detail.


Author(s):  
Loubna Allam ◽  
Wiame Lakhlili ◽  
Zineb Tarhda ◽  
Jihane Akachar ◽  
Fatima Ghrifi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document