scholarly journals A Topologically Charged Black Hole in thefℛBraneworld

2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Alexis Larrañaga ◽  
Andres Rengifo ◽  
Luis Cabarique

We find a new general black hole solution in the braneworld scenario, considering a modified 5-dimensionalfℛaction in the bulk. We study the horizon structure and find the possibility of two, one, or no horizon depending on the value of the topological parameterβ. On the thermodynamics side, we show that the value of the topological parameter determines the black hole temperature to have a divergent behaviour at small scales or to present a maximum value before cooling down towards a zero temperature remnant.

2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Zi-Yu Tang ◽  
Bin Wang ◽  
Eleftherios Papantonopoulos

AbstractWe consider Maxwell-f(R) gravity and obtain an exact charged black hole solution with dynamic curvature in D-dimensions. Considering a spherically symmetric metric ansatz and without specifying the form of f(R) we find a general black hole solution in D-dimensions. This general black hole solution can reduce to the Reissner–Nordström (RN) black hole in D-dimensions in Einstein gravity and to the known charged black hole solutions with constant curvature in f(R) gravity. Restricting the parameters of the general solution we get polynomial solutions which reveal novel properties when compared to RN black holes. Specifically we study the solution in $$(3+1)$$ ( 3 + 1 ) -dimensions in which the form of f(R) can be solved explicitly giving a dynamic curvature and compare it with the RN black hole. We also carry out a detailed study of its thermodynamics.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Alexis Larrañaga ◽  
Claudia Grisales ◽  
Manuel Londoño

We have obtained a rotating black hole solution in the braneworld scenario by applying the Newman-Janis algorithm. The new solution carries two types of charge, one arising from the bulk Weyl tensor and one from the gauge field trapped on the brane. In order to obtain this result, we used a modified version of the algorithm in which the involved complexification is the key point. The analysis of the horizon structure of the new metric shows similarities to the Kerr-Newman solution. In particular, there is a minimal mass to which the black hole can decay through the Hawking radiation. From the thermodynamical analysis, the possibility of a degenerate horizon gives a temperature that, instead of a divergent behaviour at short scales, admits both a minimum and a maximum before cooling down towards a zero temperature remnant configuration.


Pramana ◽  
2012 ◽  
Vol 78 (5) ◽  
pp. 697-703 ◽  
Author(s):  
ALEXIS LARRAÑAGA

Author(s):  
Ke Yang ◽  
Bao-Min Gu ◽  
Shao-Wen Wei ◽  
Yu-Xiao Liu

Abstract A novel four-dimensional Einstein-Gauss-Bonnet gravity was formulated by Glavan and Lin (Phys. Rev. Lett. 124:081301, 2020), which is intended to bypass the Lovelock’s theorem and to yield a non-trivial contribution to the four-dimensional gravitational dynamics. However, the validity and consistency of this theory has been called into question recently. We study a static and spherically symmetric black hole charged by a Born–Infeld electric field in the novel four-dimensional Einstein–Gauss–Bonnet gravity. It is found that the black hole solution still suffers the singularity problem, since particles incident from infinity can reach the singularity. It is also demonstrated that the Born-Infeld charged black hole may be superior to the Maxwell charged black hole to be a charged extension of the Schwarzschild-AdS-like black hole in this new gravitational theory. Some basic thermodynamics of the black hole solution is also analyzed. Besides, we regain the black hole solution in the regularized four-dimensional Einstein–Gauss–Bonnet gravity proposed by Lü and Pang (arXiv:2003.11552).


2017 ◽  
Vol 32 (16) ◽  
pp. 1750092 ◽  
Author(s):  
S. I. Kruglov

We consider Heisenberg–Euler-type model of nonlinear electrodynamics with two parameters. Heisenberg–Euler electrodynamics is a particular case of this model. Corrections to Coulomb’s law at [Formula: see text] are obtained and energy conditions are studied. The total electrostatic energy of charged particles is finite. The charged black hole solution in the framework of nonlinear electrodynamics is investigated. We find the asymptotic of the metric and mass functions at [Formula: see text]. Corrections to the Reissner–Nordström solution are obtained.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Irina Radinschi ◽  
Theophanes Grammenos ◽  
Farook Rahaman ◽  
Andromahi Spanou ◽  
Marius Mihai Cazacu ◽  
...  

The evaluation of the energy-momentum distribution for a new four-dimensional, spherically symmetric, static and charged black hole spacetime geometry with constant nonzero topological Euler density is performed by using the energy-momentum complexes of Einstein and Møller. This black hole solution was recently developed in the context of the coupled Einstein–nonlinear electrodynamics of the Born-Infeld type. The energy is found to depend on the mass M and the charge q of the black hole, the cosmological constant Λ, and the radial coordinate r, while in both prescriptions all the momenta vanish. Some limiting and particular cases are analyzed and discussed, illustrating the rather extraordinary character of the spacetime geometry considered.


Sign in / Sign up

Export Citation Format

Share Document