scholarly journals Effect of Electric Field and Temperature on Average Structure and Domain Wall Motion in 0.93Bi0.5Na0.5TiO3-0.07BaTiO3Ceramic

2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Jian Wang ◽  
Yun Liu ◽  
Andrew Studer ◽  
Lasse Norén ◽  
Ray Withers

In situneutron powder diffraction patterns and dielectric spectra of 0.93Bi0.5Na0.5TiO3-0.07BaTiO3ceramic were investigated under different electrical fields and temperatures. An electric-field-induced phase transition from metrically cubic to metrically tetragonal, associated with strong domain wall motion, occurs. Such induced phase and domain wall motion are unchanged until the high-temperature phase transition occurs from metrically tetragonal to metrically cubic. All these changes are irrelevant to the observed depolarization temperature (75°C). The depolarization behaviour is thus suggested to be associated with the local structure caused by the octahedral tilt twinning disorder.

2004 ◽  
Vol 126 (15) ◽  
pp. 4756-4757 ◽  
Author(s):  
Peter J. Chupas ◽  
Santanu Chaudhuri ◽  
Jonathan C. Hanson ◽  
Xiangyun Qiu ◽  
Peter L. Lee ◽  
...  

1996 ◽  
Vol 52 (a1) ◽  
pp. C364-C364
Author(s):  
J. A. Guevara ◽  
S. L. Cuffini ◽  
Y. P. Mascarenhas ◽  
P. de la Presa ◽  
A. Ayala ◽  
...  

2016 ◽  
Vol 840 ◽  
pp. 375-380
Author(s):  
Meor Yusoff Meor Sulaiman ◽  
Khaironie Mohamed Takip ◽  
Ahmad Khairulikram Zahari

The high temperature phase transition of zirconia produced from commercial zirconyl chloride chemical was compared with that produced from a Malaysian zircon mineral. Zirconyl chloride was produced from zircon by using the hydrothermal fusion method. Initial XRD diffractogram of these samples at room temperature show that they are of amorphous structure. High temperature XRD studies was then performed on these samples; heated up to 1500°C. The XRD diffractograms shows that the crystalline structure of tetragonal zirconia was first observed and the monoclinic zirconia becomes more visible at higher heating temperature.


2014 ◽  
Vol 47 (2) ◽  
pp. 701-711 ◽  
Author(s):  
Oxana V. Magdysyuk ◽  
Melanie Müller ◽  
Robert E. Dinnebier ◽  
Christian Lipp ◽  
Thomas Schleid

The high-temperature phase transition of LuF[SeO3] has been characterized by time-resolved high-resolution synchrotron powder diffraction. On heating, a second-order structural phase transition was found at 393 K, while on cooling the same phase transition occurs at 371 K, showing a large hysteresis typical for a first-order phase transition. Detailed analysis using sequential and parametric whole powder pattern fitting revealed that the coupling between the strain and the displacive order parameter determines the behaviour of the material during the phase transition. Different possible coupling mechanisms have been evaluated and the most probable rationalized.


2015 ◽  
Vol 1754 ◽  
pp. 31-36 ◽  
Author(s):  
Toshimasa Suzuki ◽  
Koichi Kawahara ◽  
Haruka Tanaka ◽  
Kimihiro Ozaki

ABSTRACTIn this study, we conducted the in-situ observations of the magnetic domain structure change in Nd2Fe14B magnets at elevated temperature by transmission electron microscopy (TEM) / Lorentz microscopy. The in-situ observations in Nd2Fe14B magnets revealed that the magnetization reversal easily occurred at the elevated temperature. At more than 180°C, the magnetic domain wall motion could be observed by applying the magnetic field of less than 20 mT. The motion of the magnetic domain wall was discontinuous and the domain wall jumped to one grain boundary to the neighboring grain boundary at 180°C. On the other hand, the continuous domain wall motion within grain interior as well as discontinuous domain wall motion was observed at 225°C, and some grain boundaries showed still strong pinning effect even at 225°C. The temperature dependence of the pinning effect of grain boundaries would not uniform.


Sign in / Sign up

Export Citation Format

Share Document